scholarly journals Research on Substation Project Cost Prediction Based on Sparrow Search Algorithm Optimized BP Neural Network

2021 ◽  
Vol 13 (24) ◽  
pp. 13746
Author(s):  
Xiaomin Xu ◽  
Luyao Peng ◽  
Zhengsen Ji ◽  
Shipeng Zheng ◽  
Zhuxiao Tian ◽  
...  

The prediction of power grid engineering cost is the basis of fine management of power grid engineering, and accurate prediction of substation engineering cost can effectively ensure the fine operation of engineering funds. With the continuous expansion of the engineering system, the influencing factors and data dimensions of substation project investment are gradually diversified and complex, which further increases the uncertainty and complexity of substation project cost. Based on the concept of substation engineering data space, this paper investigates the influencing factors and constructs the static total investment intelligent prediction model of substation engineering. The emerging swarm intelligence algorithm, sparrow search algorithm (SSA), is used to optimize the parameters of the BP neural network to improve the prediction accuracy and convergence speed of neural network. In order to test the validity of the model, an example analysis is carried out based on the data of a provincial substation project. It was found that the SSA-BP can effectively improve the prediction accuracy and provide new methods and approaches for practical application and research.

2013 ◽  
Vol 756-759 ◽  
pp. 1696-1700 ◽  
Author(s):  
Yi Lin Wang ◽  
Guo Xin Wang ◽  
Yan Yan

Traditional scientific research project cost estimating method cannot meet accuracy and practicability at the same time. Aiming at this problem, scientific research project cost estimating method based on neural network was built. Firstly, the construction and influencing factors of scientific research project cost were analyzed. Secondly, an estimating model based on improved BP neural network was built; a nonlinear expression between influencing factors (input) and cost (output) was created. Finally, an estimating system with the model was implemented by Java. The effectiveness of the method was tested. Testing experiment showed the estimating model based on improved BP neural network is reliable and the precision is high.


2011 ◽  
Vol 50-51 ◽  
pp. 977-981 ◽  
Author(s):  
Jing Wang ◽  
Guo Li Wang ◽  
Jian Hui Wu ◽  
Yu Su

Artificial neural network is based on human brain structure and operational mechanism based on knowledge and understanding of its structure and behavior of simulated an engineering system. BP artificial neural network is an important component of neural networks, as it can on the linear or nonlinear multivariable without preconditions in the case of statistical analysis, with the traditional statistical methods, analysis of the variables need to be consistent with certain conditions compared to its own advantage. The BP neural network does not need the precise mathematical model, does not have any supposition request to the material itself. Its processing non-linear problem's ability is stronger than traditional statistical methods. This article uses two groups of data to establish the BP neural network model separately, and carries on the comparison to the model fitting ability and the forecast performance, discovered BP neural network when data distribution relative centralism fits ability, forecasts the stable property. But the predictive ability is unable in the discrete data application to achieve anticipated ideally.


2022 ◽  
Vol 12 (2) ◽  
pp. 757
Author(s):  
Xiaofeng Wang ◽  
Baochang Liu ◽  
Jiaqi Yun ◽  
Xueqi Wang ◽  
Haoliang Bai

The connection between the steel joint and aluminum alloy pipe is the weak part of the aluminum alloy drill pipe. Practically, the interference connection between the aluminum alloy rod and the steel joint is usually realized by thermal assembly. In this paper, the relationship between the cooling water flow rate, initial heating temperature and the thermal deformation of the steel joint in interference thermal assembly was studied and predicted. Firstly, the temperature data of each measuring point of the steel joint were obtained by a thermal assembly experiment. Based on the theory of thermoelasticity, the analytical solution of the thermal deformation of the steel joint was studied. The temperature function was fitted by the least square method, and the calculated value of radial thermal deformation of the section was finally obtained. Based on the BP neural network algorithm, the thermal deformation of steel joint section was predicted. Besides, a prediction model was established, which was about the relationship between cooling water flow rate, initial heating temperature and interference. The magnitude of interference fit of steel joint was predicted. The magnitude of the interference fit of the steel joint was predicted. A polynomial model, exponential model and Gaussian model were adopted to predict the sectional deformation so as to compare and analyze the predictive performance of a BP neural network, among which the polynomial model was used to predict the magnitude of the interference fit. Through a comparative analysis of the fitting residual (RE) and sum of squares of the error (SSE), it can be known that a BP neural network has good prediction accuracy. The predicted results showed that the error of the prediction model increases with the increase of the heating temperature in the prediction model of the steel node interference and related factors. When the cooling water velocity hit 0.038 m/s, the prediction accuracy was the highest. The prediction error increases with the increase or decrease of the velocity. Especially when the velocity increases, the trend of error increasing became more obvious. The analysis shows that this method has better prediction accuracy.


2021 ◽  
pp. 361-367
Author(s):  
Mingjiu Pan ◽  
Zhou Lan ◽  
Kai Yang ◽  
Zhifang Yu ◽  
Huaiyue Luo ◽  
...  

2013 ◽  
Vol 8 (6) ◽  
pp. 81-90
Author(s):  
Yanfu Zhang ◽  
Qian Wang ◽  
Nan Shen ◽  
Hongqing Zhang

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaoyu Wang ◽  
Kan Yang ◽  
Changsong Shen

Displacement is an important physical quantity of hydraulic structures deformation monitoring, and its prediction accuracy is the premise of ensuring the safe operation. Most existing metaheuristic methods have three problems: (1) falling into local minimum easily, (2) slowing convergence, and (3) the initial value’s sensitivity. Resolving these three problems and improving the prediction accuracy necessitate the application of genetic algorithm-based backpropagation (GA-BP) neural network and multiple population genetic algorithm (MPGA). A hybrid multiple population genetic algorithm backpropagation (MPGA-BP) neural network algorithm is put forward to optimize deformation prediction from periodic monitoring surveys of hydraulic structures. This hybrid model is employed for analyzing the displacement of a gravity dam in China. The results show the proposed model is superior to an ordinary BP neural network and statistical regression model in the aspect of global search, convergence speed, and prediction accuracy.


2020 ◽  
Vol 10 (8) ◽  
pp. 2926
Author(s):  
Yanzhen Chen ◽  
Yihuai Hu ◽  
Shenglong Zhang ◽  
Xiaojun Mei ◽  
Qingguo Shi

In order to accurately predict the erosion effect of underwater cleaning with an angle nozzle under different working conditions, this paper uses refractory bricks to simulate marine fouling as the erosion target, and studies the optimized erosion prediction model by erosion test based on the submerged low-pressure water jet. The erosion test is conducted by orthogonal experimental design, and experimental data are used for the prediction model. By combining with statistical range and variance analysis methods, the jet pressure, impact time and jet angle are determined as three inputs of the prediction model, and erosion depth is the output index of the prediction model. A virtual data generation method is used to increase the amount of input data for the prediction model. This paper also proposes a Mind-evolved Advanced Genetic Algorithm (MAGA), which has a reliable optimization effect in the verification of four stand test functions. Then, the improved back-propagating (BP) neural network prediction models are established by respectively using Genetic Algorithm (GA) and MAGA optimization algorithms to optimize the initial thresholds and weights of the BP neural network. Compared to the prediction results of the BP and GA-BP models, the R2 of the MAGA-BP model is the highest, reaching 0.9954; the total error is reduced by 47.31% and 35.01%; the root mean square error decreases by 51.05% and 31.80%; and the maximum absolute percentage error decreases by 65.79% and 64.01%, respectively. The average prediction accuracy of the MAGA-BP model is controlled within 3%, which has been significantly improved. The results show that the prediction accuracy of the MAGA-BP prediction model is higher and more reliable, and the MAGA algorithm has a good optimization effect. This optimized erosion prediction method is feasible.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yudong Li ◽  
Zhongke Feng ◽  
Shilin Chen ◽  
Ziyu Zhao ◽  
Fengge Wang

The study of forest fire prediction is of great environmental and scientific significance. China’s Guangxi Autonomous Region has a high incidence rate of forest fires. At present, there is little research on forest fires in this area. The application of the artificial neural network and support vector machines (SVM) in forest fire prediction in this area can provide data for forest fire prevention and control in Guangxi. In this paper, based on Guangxi’s 2010–2018 satellite monitoring hotspot data, meteorology, terrain, vegetation, infrastructure, and socioeconomic data, the researchers determined the main forest fire driving factors in Guangxi. They used feature selection and backpropagation neural networks and radial basis SVM to build forest fire prediction models. Finally, the researchers use the accuracy, precision, and area under the characteristic curve (ROC-AUC) and other indicators to evaluate the predictive performance of the two models. The results showed that the prediction accuracy of the BP neural network and SVM is 92.16% and 89.89%, respectively. As both results are over 85%, the requirements of prediction accuracy is met. These results can be used for forest fire prediction in the Guangxi Autonomous Region. Specifically, the accuracy of the BP neural network was 0.93, which was higher than that of the SVM model (0.89); the recall of the SVM model was 0.84, which was lower than the BANN model (0.92), and the AUC value of the SVM model was 0.95, which was lower than the BP neural network model. The obtained results confirm that the BP neural network model can provide more prediction accuracy than support vector machines and is therefore more suitable for forest fire prediction in Guangxi, China. This research provides the necessary theoretical basis and data support for application in the field of forestry of the Guangxi Autonomous Region, China.


Sign in / Sign up

Export Citation Format

Share Document