scholarly journals Climate-Change Impacts on the Southernmost Mediterranean Arctic-Alpine Plant Populations

2021 ◽  
Vol 13 (24) ◽  
pp. 13778
Author(s):  
Konstantinos Kougioumoutzis ◽  
Ioannis P. Kokkoris ◽  
Arne Strid ◽  
Thomas Raus ◽  
Panayotis Dimopoulos

Human-induced climate- and land-use change have been affecting biogeographical and biodiversity patterns for the past two centuries all over the globe, resulting in increased extinction and biotic homogenization rates. High mountain ecosystems are more sensitive to these changes, which have led to physiological and phenological shifts, as well as to ecosystem processes’ deformation. Glacial relicts, such as arctic-alpine taxa, are sensitive indicators of the effects of global warming and their rear-edge populations could include warm-adapted genotypes that might prove—conservation-wise—useful in an era of unprecedented climate regimes. Despite the ongoing thermophilization in European and Mediterranean summits, it still remains unknown how past and future climate-change might affect the distributional patterns of the glacial relict, arctic-alpine taxa occurring in Greece, their European southernmost distributional limit. Using species distribution models, we investigated the impacts of past and future climate changes on the arctic-alpine taxa occurring in Greece and identified the areas comprising arctic-alpine biodiversity hotspots in Greece. Most of these species will be faced with severe range reductions in the near future, despite their innate resilience to a multitude of threats, while the species richness hotspots will experience both altitudinal and latitudinal shifts. Being long-lived perennials means that there might be an extinction-debt present in these taxa, and a prolonged stability phase could be masking the deleterious effects of climate change on them. Several ex situ conservation measures (e.g., seed collection, population augmentation) should be taken to preserve the southernmost populations of these rare arctic-alpine taxa and a better understanding of their population genetics is urgently needed.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Leclerc ◽  
Franck Courchamp ◽  
Céline Bellard

Abstract Despite their high vulnerability, insular ecosystems have been largely ignored in climate change assessments, and when they are investigated, studies tend to focus on exposure to threats instead of vulnerability. The present study examines climate change vulnerability of islands, focusing on endemic mammals and by 2050 (RCPs 6.0 and 8.5), using trait-based and quantitative-vulnerability frameworks that take into account exposure, sensitivity, and adaptive capacity. Our results suggest that all islands and archipelagos show a certain level of vulnerability to future climate change, that is typically more important in Pacific Ocean ones. Among the drivers of vulnerability to climate change, exposure was rarely the main one and did not explain the pattern of vulnerability. In addition, endemic mammals with long generation lengths and high dietary specializations are predicted to be the most vulnerable to climate change. Our findings highlight the importance of exploring islands vulnerability to identify the highest climate change impacts and to avoid the extinction of unique biodiversity.


2018 ◽  
Vol 163 ◽  
pp. 171-185 ◽  
Author(s):  
Ying Li ◽  
Ting Ren ◽  
Patrick L. Kinney ◽  
Andrew Joyner ◽  
Wei Zhang

2021 ◽  
Vol 18 (18) ◽  
pp. 5053-5083
Author(s):  
Jessica L. McCarty ◽  
Juha Aalto ◽  
Ville-Veikko Paunu ◽  
Steve R. Arnold ◽  
Sabine Eckhardt ◽  
...  

Abstract. In recent years, the pan-Arctic region has experienced increasingly extreme fire seasons. Fires in the northern high latitudes are driven by current and future climate change, lightning, fuel conditions, and human activity. In this context, conceptualizing and parameterizing current and future Arctic fire regimes will be important for fire and land management as well as understanding current and predicting future fire emissions. The objectives of this review were driven by policy questions identified by the Arctic Monitoring and Assessment Programme (AMAP) Working Group and posed to its Expert Group on Short-Lived Climate Forcers. This review synthesizes current understanding of the changing Arctic and boreal fire regimes, particularly as fire activity and its response to future climate change in the pan-Arctic have consequences for Arctic Council states aiming to mitigate and adapt to climate change in the north. The conclusions from our synthesis are the following. (1) Current and future Arctic fires, and the adjacent boreal region, are driven by natural (i.e. lightning) and human-caused ignition sources, including fires caused by timber and energy extraction, prescribed burning for landscape management, and tourism activities. Little is published in the scientific literature about cultural burning by Indigenous populations across the pan-Arctic, and questions remain on the source of ignitions above 70∘ N in Arctic Russia. (2) Climate change is expected to make Arctic fires more likely by increasing the likelihood of extreme fire weather, increased lightning activity, and drier vegetative and ground fuel conditions. (3) To some extent, shifting agricultural land use and forest transitions from forest–steppe to steppe, tundra to taiga, and coniferous to deciduous in a warmer climate may increase and decrease open biomass burning, depending on land use in addition to climate-driven biome shifts. However, at the country and landscape scales, these relationships are not well established. (4) Current black carbon and PM2.5 emissions from wildfires above 50 and 65∘ N are larger than emissions from the anthropogenic sectors of residential combustion, transportation, and flaring. Wildfire emissions have increased from 2010 to 2020, particularly above 60∘ N, with 56 % of black carbon emissions above 65∘ N in 2020 attributed to open biomass burning – indicating how extreme the 2020 wildfire season was and how severe future Arctic wildfire seasons can potentially be. (5) What works in the boreal zones to prevent and fight wildfires may not work in the Arctic. Fire management will need to adapt to a changing climate, economic development, the Indigenous and local communities, and fragile northern ecosystems, including permafrost and peatlands. (6) Factors contributing to the uncertainty of predicting and quantifying future Arctic fire regimes include underestimation of Arctic fires by satellite systems, lack of agreement between Earth observations and official statistics, and still needed refinements of location, conditions, and previous fire return intervals on peat and permafrost landscapes. This review highlights that much research is needed in order to understand the local and regional impacts of the changing Arctic fire regime on emissions and the global climate, ecosystems, and pan-Arctic communities.


Időjárás ◽  
2019 ◽  
Vol 123 (3) ◽  
pp. 351-370 ◽  
Author(s):  
Aleksandar Janković ◽  
Zorica Podraščanin ◽  
Vladimir Djurdjevic

2014 ◽  
Vol 9 (10) ◽  
pp. 104006 ◽  
Author(s):  
B Sultan ◽  
K Guan ◽  
M Kouressy ◽  
M Biasutti ◽  
C Piani ◽  
...  

2016 ◽  
Vol 164 ◽  
pp. 317-330 ◽  
Author(s):  
Pradip Adhikari ◽  
Srinivasulu Ale ◽  
James P. Bordovsky ◽  
Kelly R. Thorp ◽  
Naga R. Modala ◽  
...  

Water ◽  
2016 ◽  
Vol 8 (11) ◽  
pp. 523 ◽  
Author(s):  
Thi Nguyen ◽  
Laura Mula ◽  
Raffaele Cortignani ◽  
Giovanna Seddaiu ◽  
Gabriele Dono ◽  
...  

2015 ◽  
Vol 39 (1) ◽  
pp. 49-67 ◽  
Author(s):  
Christopher R. Jackson ◽  
John P. Bloomfield ◽  
Jonathan D. Mackay

We examine the evidence for climate-change impacts on groundwater levels provided by studies of the historical observational record, and future climate-change impact modelling. To date no evidence has been found for systematic changes in groundwater drought frequency or intensity in the UK, but some evidence of multi-annual to decadal coherence of groundwater levels and large-scale climate indices has been found, which should be considered when trying to identify any trends. We analyse trends in long groundwater level time-series monitored in seven observation boreholes in the Chalk aquifer, and identify statistically significant declines at four of these sites, but do not attempt to attribute these to a change in a stimulus. The evidence for the impacts of future climate change on UK groundwater recharge and levels is limited. The number of studies that have been undertaken is small and different approaches have been adopted to quantify impacts. Furthermore, these studies have generally focused on relatively small regions and reported local findings. Consequently, it has been difficult to compare them between locations. We undertake some additional analysis of the probabilistic outputs of the one recent impact study that has produced coherent multi-site projections of changes in groundwater levels. These results suggest reductions in annual and average summer levels, and increases in average winter levels, by the 2050s under a high greenhouse gas emissions scenario, at most of the sites modelled, when expressed by the median of the ensemble of simulations. It is concluded, however, that local hydrogeological conditions can be an important control on the simulated response to a future climate projection.


Sign in / Sign up

Export Citation Format

Share Document