scholarly journals Life Cycle Assessment of Biocement: An Emerging Sustainable Solution?

2021 ◽  
Vol 13 (24) ◽  
pp. 13878
Author(s):  
Hannah Porter ◽  
Abhijit Mukherjee ◽  
Rabin Tuladhar ◽  
Navdeep Kaur Dhami

Microbially Induced Calcium Carbonate Precipitation (MICP) is a natural biocementation that takes place in corals, stromatolites and beach rocks. In recent years, researchers have explored the emulation of this process as a sustainable alternative of engineered cement. Although the natural process is undoubtedly sustainable, its engineered variant deviates substantially from the natural process. In this paper, we investigate the environmental and economic performance of the engineered biocementation process vis-à-vis present manufacturing of calcium carbonate. SimaPro 8.0 software and the Ecoinvent V2.2 database were used for materials inputs and AUSLCI along with Cumulative Energy Demand 2.01 software were used for carbon footprint and eutrophication potential. Our results show that different metabolic pathways of MICP have considerably varying environmental impact. We observe that nature performs MICP sustainably at ambient conditions and geological time scales utilizing naturally occurring sources of carbon and calcium at micromoles concentrations. Due to the mandate on duration of construction projects, highly purified reactants in a high concentration are used in the engineered process. This has a negative environmental impact. We conclude that the sustainability of engineered MICP is directly impacted by the metabolic pathway of bacteria as well as the purity of the input chemicals. A few biotic processes are superior to the present industrial process for manufacturing calcium carbonate if ingredients of laboratory grade purity are replaced by industrial grade products. A bigger dividend can be obtained by introducing industry by-products as nutrients. The results of this study help to direct future research for developing sustainable biocement for the construction industry.

2020 ◽  
Vol 25 (10) ◽  
pp. 1930-1941
Author(s):  
Benjamin Fritz ◽  
Carin Aichele ◽  
Mario Schmidt

Abstract Purpose The gold routes satisfying the global gold supply are mining (74%), recycling of high-value gold (23%), and electronic scraps (3%). Besides its applications in the investment, jewelry, and industrial sector, gold also has a bad image. The gold production in industrial as well as artisanal and small-scale mines creates negative impacts such as resource depletion, extensive chemical use, toxic emissions, high energy consumption, and social concerns that are of great importance. On the other hand, almost all gold is recycled and has historically always been. In common life cycle assessment (LCA) databases, there is no data on recycling of high-value gold available. This article attempts to answer the question what the ecological benefits of this recycling are. Method In this study, we were able to collect process data on the most commonly used high-value gold scrap recycling process, the aqua regia method, from several state-of-the-art German refineries. With this data, life cycle inventories were created and a life cycle model was produced to finally generate life cycle impacts of high-value gold scrap recycling. Results This study contains the corresponding inventories and thus enables other interested parties to use these processes for their own LCA studies. The results show that high-value gold scrap recycling has a considerably lower environmental impact than electronic gold scrap recycling and mining. For example, high-value gold scrap recycling in Germany results in a cumulative energy demand (CED) of 820 MJ and a global warming potential (GWP) of 53 kg-CO2-Eq. per kg gold. In comparison, common datasets indicate CED and GWP levels of nearly 8 GJ and 1 t-CO2-Eq. per kg gold, respectively, for electronic scrap recycling and levels of 240 GJ and 16 t-CO2-Eq. per kg gold, respectively, for mining. Conclusion The results show that buying gold from precious metal recycling facilities with high technological standards and a reliable origin of the recycling material is about 300 times better than primary production.


Author(s):  
Mauro Zampilli ◽  
Gianni Bidini ◽  
Paolo Laranci ◽  
Michele D’Amico ◽  
Pietro Bartocci ◽  
...  

The global microturbine market will grow at an interesting Compound Annual Growth Rate during the period 2016–2020 and a key driver will be distributed generation also with unconventional fuels. This paper compares the performances of two different microturbine based technologies for biomass micro CHP. One is the Integrated Pyrolysis Regenerated Plant (IPRP), technology developed by the authors by coupling a pyrolyzer to a mGT fuelled by biomass pyrolysis gas. Two IPRP versions are considered: one in which char is burned to provide pyrolysis energy and one in which it is used as a carbon sink. The second technology is the Externally Fired Gas Turbine (EFGT) based on biomass combustion in a dedicated burner and high temperature heat exchangers used to heat up compressed air which expands in the mGT. Hot air at the turbine exhaust is used as combustion air for biomass. The layout and operational conditions considered were optimized by the authors in previous works. The environmental performance of the two technologies when fuelled with the same biomass at the same power output, is assessed through a Life Cycle Assessment (LCA) analysis, calculating impacts on acidification, carbon footprint and Cumulative Energy Demand (CED). Two sensitivity analysis are also performed on different vegetal oils used for scrubbing and different methods of allocation, referred to CHP products. Results show that both technologies have negative carbon footprints, however the IPRP has the worst performance because of the sunflower oil, used for syngas scrubbing, which offsets the additional carbon sink benefit of biochar. If water it used as a scrubbing medium in the IPRP plant, this configuration obtains similar results in terms of environmental impact, compared to IPRP plant using vegetable oil as a scrubbing medium. However, when the effect of a different vegetal oil is considered, namely a waste frying oil, the former introduces extraordinary benefits resulting in the IPRP outperforming the EFmGT in terms of carbon negative technology.


Author(s):  
Jakob Johansson ◽  
Anna Furberg ◽  
Fredrik Schultheiss

The traditional method for recycling brass chips is to send the scrap back to the material manufacturer for re-melting. Alternatively, brass chips can be reclaimed through hot forging operations at the production site. As an initial screening of the environmental impact of this novel reclamation method, the impacts of this new method was compared to conventional brass production (including recycling) for a specific part. These two production routes were compared in terms of cumulative energy demand and climate change impact. The comparison between the two production routes showed that the new reclamation method reduced the cumulative energy demand with 29 % and climate change impact with 30 % for production of a specific part compared to conventional recycling. It is, however, important to note that the material produced using hot forging reclamation method have slightly lower mechanical properties as compared to the traditionally recycled material. Currently the novel recycling method is only tested in lab scale and therefore, further studies are needed in order to fully assess the environmental impacts of the new reclamation method compared to conventional brass production.


2021 ◽  
Vol 13 (6) ◽  
pp. 3542
Author(s):  
Hatem Alhazmi ◽  
Abdulilah K. Alduwais ◽  
Thamer Tabbakh ◽  
Saad Aljamlani ◽  
Bandar Alkahlan ◽  
...  

The building and construction sector has a huge impact on the environment because of the enormous amounts of natural resources and energy consumed during the life cycle of construction projects. In this study, we evaluated the potential environmental impact of the construction of a villa, from cradle to grave, in the Saudi Arabian context. Centrum voor Milieukunde Leiden (CML) for Centre of Environmental Science of Leiden University-IA baseline v3.03 methods were used to obtain the environmental profile for the impact categories, and Cumulative Energy Demand v1.09 was used to measure the embodied energy of the villa life cycle. The analyzed midpoint impact categories include global warming (GWP100a), ozone layer depletion (ODP), acidification (AP), eutrophication (EP), photochemical oxidation (POCP), and indicator cumulative energy demand (CED). The operation use phase of the villa was found to have the highest global warming potential and acidification with 2.61 × 106 kg CO2-eq and 1.75 × 104 kg SO2-eq, respectively. Sensitivity analysis was performed on the Saudi Arabian plans to increase the share of renewable sources and reduce the amount of electricity generated from hydrocarbons, which currently represents 46% of the total installed power, by 2032. The results showed that compared with the current electricity environmental impact, the CO2 emission from electricity will decrease by 53%, which represents a significant reduction in environmental impact. The findings will help with the life cycle assessment of structures during future planning and for energy conservation.


2019 ◽  
Vol 11 (24) ◽  
pp. 6923 ◽  
Author(s):  
Amir Hajiesmaeili ◽  
Francesco Pittau ◽  
Emmanuel Denarié ◽  
Guillaume Habert

(PE)-UHPFRC, a novel strain hardening ultra high-performance fiber reinforced concrete (UHPFRC) with low clinker content, using Ultra-High Molecular Weight Polyethylene (UHMW-PE) fibers, was developed for structural applications of rehabilitation. A comprehensive life cycle assessment (LCA) was carried out to study the environmental impact of interventions on an existing bridge using PE-UHPFRC compared with conventional UHPFRC and post-tensioned reinforced concrete methods in three categories of global warming potential (GWP), cumulative energy demand (CED), and ecological scarcity (UBP). The results showed 55% and 29% decreases in the environmental impact of the PE-UHPFRC compared with reinforced concrete and conventional UHPFRC methods, respectively, which highlighted the effectiveness of this material for the rehabilitation/strengthening of structures from the viewpoint of environmental impact.


2018 ◽  
Vol 11 (1) ◽  
pp. 43 ◽  
Author(s):  
Erik Svanes ◽  
Sofie Oestergaard ◽  
Ole Hanssen

Bread is a staple food in Norway, with a yearly per capita consumption of 52 kg. It is an important source of energy, dietary fibre and protein as well as certain minerals and vitamins. Previous studies have shown that bread has a relatively low environmental impact compared with other foods. Food waste studies, however, have shown that bread and other baked goods have a high wastage rate in Norway. On the basis of lower Norwegian wheat yields, it is therefore expected that the environmental impact of bread could be higher than in other European countries. The purpose of this study was to assess the environmental impact of bread from cradle to grave, identify environmental hotspots, examine the role of packaging in bread waste and identify possible remediation measures with a particular focus on the post-farm value chain. The results showed that for every kilogram of bread consumed, the global warming potential was 0.99 kg CO2-eq, the eutrophication potential was 7.2 g PO4-eq, the acidification potential was 8.4 g SO2-eq and the cumulative energy demand was 18 MJ. The principal uncertainty within the calculation was the use of database data for the 21 ingredients. For example, the effect of soil mineralisation, which could give significant CO2 and N2O emissions, was not included because figures have only been quantified for a few ingredients and there is no international agreement on the methodology. The primary hotspot was the production of the ingredients, principally at the agricultural stage, while bread waste took the second place. The highest potential for the reduction of post-farm environmental impact lies in reducing product wastage at the retail and consumer stages. Consumers already employ strategies to reduce wastage, such as using extra packaging and freezing and toasting bread. This study shows that other consumer packaging solutions can keep the bread fresh for longer, thus reducing wastage and the need for the abovementioned consumer strategies. Nevertheless, other researches in this subject have shown that consumer preferences and behaviours play a significant role in the creation of bread waste, and this should therefore be taken into account when planning reduction measures.


2020 ◽  
Vol 12 (21) ◽  
pp. 9029
Author(s):  
Israel Torres Pineda ◽  
Jeong Hwa Cho ◽  
Dongkeun Lee ◽  
Sang Min Lee ◽  
Sangseok Yu ◽  
...  

In this work, we used life cycle assessment (LCA) to determine the environmental impact of fresh tomato production using a conventional greenhouse (GH) located in a rural area versus a rooftop greenhouse (RTG) located in an urban area in South Korea. The heating and cooling loads were modeled for a period of 12 months using the simulation software TRNSYS. The comparative LCA was then performed for the GH and RTG using these data. It was found that 19% less energy is required for heating an RTG and 38% more energy is used for cooling compared with a GH. Nevertheless, the total energy load reduction for the RTG is 13%. This decreased energy consumption is due to smaller heat losses of the RTG during the colder months. The decreased energy load, combined with the elimination of transportation, storage, and handling losses during the distribution stage, resulted in 43% less global warming potential, 45% less cumulative energy demand and abiotic depletion, 37% less photochemical oxidation and acidification, and 27% less eutrophication for the RTG. Further studies with seasonal yield data, energy sources, and integrated energy flows are expected to provide a better understanding of the advantages of urban farming in this region.


2021 ◽  
Vol 13 (12) ◽  
pp. 6894
Author(s):  
Shakira R. Hobbs ◽  
Tyler M. Harris ◽  
William J. Barr ◽  
Amy E. Landis

The environmental impacts of five waste management scenarios for polylactic acid (PLA)-based bioplastics and food waste were quantified using life cycle assessment. Laboratory experiments have demonstrated the potential for a pretreatment process to accelerate the degradation of bioplastics and were modeled in two of the five scenarios assessed. The five scenarios analyzed in this study were: (1a) Anaerobic digestion (1b) Anaerobic digestion with pretreatment; (2a) Compost; (2a) Compost with pretreatment; (3) Landfill. Results suggested that food waste and pretreated bioplastics disposed of with an anaerobic digester offers life cycle and environmental net total benefits (environmental advantages/offsets) in several areas: ecotoxicity (−81.38 CTUe), eutrophication (0 kg N eq), cumulative energy demand (−1.79 MJ), global warming potential (0.19 kg CO2), and human health non-carcinogenic (−2.52 CTuh). Normalized results across all impact categories show that anaerobically digesting food waste and bioplastics offer the most offsets for ecotoxicity, eutrophication, cumulative energy demand and non-carcinogenic. Implications from this study can lead to nutrient and energy recovery from an anaerobic digester that can diversify the types of fertilizers and decrease landfill waste while decreasing dependency on non-renewable technologies. Thus, using anaerobic digestion to manage bioplastics and food waste should be further explored as a viable and sustainable solution for waste management.


Author(s):  
Alberto Tama Franco

Wind technology is considered to be among the most promising types of renewable energy sources, and due to high oil prices and growing concerns about climate change and energy security, it has been the subject of extensive considerations in recent years, including questions related to the relative sustainability of electricity production when the manufacturing, assembly, transportation and dismantling processes of these facilities are taken into account. The present article evaluates the environmental impacts, carbon emissions and water consumption, derived from the production of electric energy of the Villonaco wind farm, located in Loja-Ecuador, during its entire life cycle, using the Life Cycle Analysis method. Finally, it is concluded that wind energy has greater environmental advantages, since it has lower values of carbon and water footprints than other energy sources. Additionally, with the techniques Cumulative Energy Demand and Energy Return on Investment, sustainability in the production of electricity from wind power in Ecuador is demonstrated; and, that due to issues of vulnerability to climate change, the diversification of its energy mix is essential considering the inclusion of non-conventional renewable sources such as solar or wind, this being the only way to reduce both the carbon footprint and the water supply power.


Sign in / Sign up

Export Citation Format

Share Document