scholarly journals Neutrino Flavor Transitions as Mass State Transitions

Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 948
Author(s):  
John R. Fanchi

Experiments have shown that transitions occur between electron neutrino, muon neutrino, and tau neutrino flavors. Some experiments indicate the possible existence of a fourth neutrino known as the sterile neutrino. The question arises: do all neutrino flavors participate in transitions between flavors? These transitions are viewed as mass state transitions in parametrized relativistic dynamics (PRD). PRD frameworks have been developed for neutrino flavor transitions associated with the mixing of two mass states or the mixing of three mass states. This paper presents an extension of the framework to neutrino flavor transitions associated with the mixing of four mass states.

2009 ◽  
Vol 103 (26) ◽  
Author(s):  
P. Adamson ◽  
C. Andreopoulos ◽  
K. E. Arms ◽  
R. Armstrong ◽  
D. J. Auty ◽  
...  

2012 ◽  
Vol 27 (04) ◽  
pp. 1230005 ◽  
Author(s):  
BO-QIANG MA

This is a brief review on the experimental measurements of the muon neutrino velocities from the OPERA, Fermilab and MINOS experiments and that of the (anti)-electron neutrino velocities from the supernova SN1987A, and consequently on the theoretical attempts to attribute the data as signals for superluminality of neutrinos. Different scenarios on how to understand and treat the background fields in the effective field theory frameworks are pointed out. Challenges on interpreting the OPERA result as a signal of neutrino superluminality are briefly reviewed and discussed. It is also pointed out that a covariant picture of Lorentz violation can avoid the refutation on the OPERA experiment.


Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 21
Author(s):  
Dean Karlen ◽  
on behalf of the TtwoK Collaboration

The T2K long baseline neutrino oscillation experiment measures muon neutrino disappearance and electron neutrino appearance in accelerator-produced neutrino and anti-neutrino beams. This presentation reports on the analysis of our data from an exposure of 2 . 6 × 10 21 protons on target. Results for oscillation parameters, including the CP violation parameter and neutrino mass ordering, are shown.


2019 ◽  
Vol 207 ◽  
pp. 04005 ◽  
Author(s):  
B. J. P. Jones

Anomalies in short baseline experiments have been interpreted as evidence for additional neutrino mass states with large mass splittings from the known, active flavors. This explanation mandates a corresponding signature in the muon neutrino disappearance channel, which has yet to be observed. Searches for muon neutrino disappearance at the IceCube neutrino telescope presently provide the strongest limits in the space of mixing angles for eVscale sterile neutrinos. This proceeding for the Very Large Volume Neutrino Telescopes (VLVnT) Workshop summarizes the IceCube analyses that have searched for sterile neutrinos and describes ongoing work toward enhanced, high-statistics sterile neutrino searches.


2004 ◽  
Vol 13 (05) ◽  
pp. 831-841 ◽  
Author(s):  
DANIELA KIRILOVA

We study the distortion of electron neutrino energy spectrum due to oscillations with the sterile neutrino νe↔νs, for different initial populations of the sterile state δNs at the onset of oscillations. The influence of this spectrum distortion on Big Bang Nucleosynthesis is analyzed. Only the case of an initially empty sterile state was studied in previous publications. The primordial abundance of 4He is calculated for all possible δNs:0≤δNs≤1 in the model of oscillations, effective after electron neutrino decoupling, for which the spectrum distortion effects on the neutron–proton transitions are the strongest. It is found that the spectrum distortion effect may be dominant, not only in the case of small δNs, but also in the case of large initial population of νs. For example, in the resonant case it may play a considerable role even for very large δNs~0.8. Cosmological constraints on neutrino mixing for small δNs are discussed.


2016 ◽  
Vol 31 (20n21) ◽  
pp. 1650123 ◽  
Author(s):  
Paraskevi Divari ◽  
John Vergados

In this paper, we study the effect of conversion of super-light sterile neutrino (SLSN) to electron neutrino in matter like that of the Earth. In the Sun the resonance conversion between SLSN and electron neutrino via the neutral current is suppressed due to the smallness of neutron number. On the other hand, neutron number density can play an important role in the Earth, making the scenario of SLSN quite interesting. The effect of CP-violating phases on active-SLSN oscillations is also discussed. Reactor neutrino experiments with medium or short baseline may probe the scenario of SLSN.


2021 ◽  
Vol 13 (3) ◽  
pp. 15
Author(s):  
Josip Soln

The bicubic equation of particle limiting velocity formalism yields three solutions c1, c2 and c3, (primary, secondary and tertiary) limiting velocities in terms of the congruent parameter  which is defined in terms of m, v, and E, respectively being particle mass, velocity and energy. The bicubic equation discriminant D is given in terms of the congruent parameter z(m). When one has z2(m) ≤ 1 with the discriminant satisfying D ≤ 0 then we are talking about limiting velocities of ordinary particles. Good examples are the relativistic particles such as electron, neutrino,etc., with luminal limiting velocity c3 = c and calculated superluminal c2, and imaginary superluminal c1, all corresponding to the real particle energy. On the specific level, the situations like these, we discuss in the muon neutrino velocities with the OPERA detector and the electron velocities from the 2010 Grab Nebula Flare. The z(m) = 1 value separates the ordinary particles from novel particles, associated with D ⪰ 0 and z2 ⪰ 1 with new novel particle limiting velocity solutions c1, c2 and c3 which depend, in addition to z(m), also on the congruent angle α(m), nonlinearly related to z(m). These solutions are discussed on the newly defined sterile neutrino which here is modeled as an ordinary particle with z2 ⪯ 1 spontaneously transiting via z(m) = 1 into the modeled novel sterile neutrino with z2 ⪰ 1. All ordinary and novel particles limiting velocities carry real particle energies; the ordinary particle limiting velocity solutions being in quadratic forms, while the novel particle limiting velocity solutions being respectively, in quadratic complex form, linear complex form, and just congruent angle α complex quadratic form.


Sign in / Sign up

Export Citation Format

Share Document