scholarly journals U-Dualities in Type II and M-Theory: A Covariant Approach

Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 993
Author(s):  
Edvard T. Musaev

In this review, a short description of exceptional field theory and its application is presented. Exceptional field theories provide a U-duality covariant description of supergravity theories, allowing addressing relevant phenomena, such as non-geometricity. Some applications of the formalism are briefly described.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Andreas P. Braun ◽  
Jin Chen ◽  
Babak Haghighat ◽  
Marcus Sperling ◽  
Shuhang Yang

Abstract We study circle compactifications of 6d superconformal field theories giving rise to 5d rank 1 and rank 2 Kaluza-Klein theories. We realise the resulting theories as M-theory compactifications on local Calabi-Yau 3-folds and match the prepotentials from geometry and field theory. One novelty in our approach is that we include explicit dependence on bare gauge couplings and mass parameters in the description which in turn leads to an accurate parametrisation of the prepotential including all parameters of the field theory. We find that the resulting geometries admit “fibre-base” duality which relates their six-dimensional origin with the purely five-dimensional quantum field theory interpretation. The fibre-base duality is realised simply by swapping base and fibre curves of compact surfaces in the local Calabi-Yau which can be viewed as the total space of the anti-canonical bundle over such surfaces. Our results show that such swappings precisely occur for surfaces with a zero self-intersection of the base curve and result in an exchange of the 6d and 5d pictures.


2001 ◽  
Vol 16 (05) ◽  
pp. 822-855 ◽  
Author(s):  
JUAN MALDACENA ◽  
CARLOS NUÑEZ

In the first part of this paper we find supergravity solutions corresponding to branes on worldvolumes of the form Rd×Σ where Σ is a Riemann surface. These theories arise when we wrap branes on holomorphic Riemann surfaces inside K3 or CY manifolds. In some cases the theory at low energies is a conformal field theory with two less dimensions. We find some non-singular supersymmetric compactifications of M-theory down to AdS5. We also propose a criterion for permissible singularities in supergravity solutions. In the second part of this paper, which can be read independently of the first, we show that there are no non-singular Randall-Sundrum or de-Sitter compactifications for large class of gravity theories.


2017 ◽  
Vol 32 (28n29) ◽  
pp. 1730021 ◽  
Author(s):  
Corinne de Lacroix ◽  
Harold Erbin ◽  
Sitender Pratap Kashyap ◽  
Ashoke Sen ◽  
Mritunjay Verma

We review recent developments in the construction of heterotic and type II string field theories and their various applications. These include systematic procedures for determining the shifts in the vacuum expectation values of fields under quantum corrections, computing renormalized masses and S-matrix of the theory around the shifted vacuum and a proof of unitarity of the S-matrix. The S-matrix computed this way is free from all divergences when there are more than 4 noncompact space–time dimensions, but suffers from the usual infrared divergences when the number of noncompact space–time dimensions is 4 or less.


2019 ◽  
Vol 6 (5) ◽  
Author(s):  
Cyril Closset ◽  
Michele Del Zotto ◽  
Vivek Saxena

We revisit the correspondence between Calabi-Yau (CY) threefold isolated singularities \mathbf{X}𝐗 and five-dimensional superconformal field theories (SCFTs), which arise at low energy in M-theory on the space-time transverse to \mathbf{X}𝐗. Focussing on the case of toric CY singularities, we analyze the “gauge-theory phases” of the SCFT by exploiting fiberwise M-theory/type IIA duality. In this setup, the low-energy gauge group simply arises on stacks of coincident D6-branes wrapping 2-cycles in some ALE space of type A_{M-1}AM−1 fibered over a real line, and the map between the Kähler parameters of \mathbf{X}𝐗 and the Coulomb branch parameters of the field theory (masses and VEVs) can be read off systematically. Different type IIA “reductions” give rise to different gauge theory phases, whose existence depends on the particular (partial) resolutions of the isolated singularity \mathbf{X}𝐗. We also comment on the case of non-isolated toric singularities. Incidentally, we propose a slightly modified expression for the Coulomb-branch prepotential of 5d \mathcal{N}=1𝒩=1 gauge theories.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
David R. Morrison ◽  
Sakura Schäfer-Nameki ◽  
Brian Willett

Abstract We study higher-form symmetries in 5d quantum field theories, whose charged operators include extended operators such as Wilson line and ’t Hooft operators. We outline criteria for the existence of higher-form symmetries both from a field theory point of view as well as from the geometric realization in M-theory on non-compact Calabi-Yau threefolds. A geometric criterion for determining the higher-form symmetry from the intersection data of the Calabi-Yau is provided, and we test it in a multitude of examples, including toric geometries. We further check that the higher-form symmetry is consistent with dualities and is invariant under flop transitions, which relate theories with the same UV-fixed point. We explore extensions to higher-form symmetries in other compactifications of M-theory, such as G2-holonomy manifolds, which give rise to 4d $$ \mathcal{N} $$ N = 1 theories.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Hiroshi Kunitomo

Abstract We show that the tree-level S-matrices of the superstring field theories based on the homotopy-algebra structure agree with those obtained in the first-quantized formulation. The proof is given in detail for the heterotic string field theory. The extensions to the type II and open superstring field theories are straightforward.


1989 ◽  
Vol 04 (11) ◽  
pp. 1069-1078
Author(s):  
GEORGE SIOPSIS

We construct covariant field theories of both type-II and heterotic strings. Toroidal compactification is also considered. The interaction vertices are based on Witten’s vertex representing three strings interacting at the mid-point. For closed strings, we thus obtain a bilocal interaction.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

The motivation for supersymmetry. The algebra, the superspace, and the representations. Field theory models and the non-renormalisation theorems. Spontaneous and explicit breaking of super-symmetry. The generalisation of the Montonen–Olive duality conjecture in supersymmetric theories. The remarkable properties of extended supersymmetric theories. A brief discussion of twisted supersymmetry in connection with topological field theories. Attempts to build a supersymmetric extention of the standard model and its experimental consequences. The property of gauge supersymmetry to include general relativity and the supergravity models.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Eric Lescano ◽  
Martín Mayo

Abstract L∞ algebras describe the underlying algebraic structure of many consistent classical field theories. In this work we analyze the algebraic structure of Gauged Double Field Theory in the generalized flux formalism. The symmetry transformations consist of a generalized deformed Lie derivative and double Lorentz transformations. We obtain all the non-trivial products in a closed form considering a generalized Kerr-Schild ansatz for the generalized frame and we include a linear perturbation for the generalized dilaton. The off-shell structure can be cast in an L3 algebra and when one considers dynamics the former is exactly promoted to an L4 algebra. The present computations show the fully algebraic structure of the fundamental charged heterotic string and the $$ {L}_3^{\mathrm{gauge}} $$ L 3 gauge structure of (Bosonic) Enhanced Double Field Theory.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Guillaume Bossard ◽  
Axel Kleinschmidt ◽  
Ergin Sezgin

Abstract We construct a pseudo-Lagrangian that is invariant under rigid E11 and transforms as a density under E11 generalised diffeomorphisms. The gauge-invariance requires the use of a section condition studied in previous work on E11 exceptional field theory and the inclusion of constrained fields that transform in an indecomposable E11-representation together with the E11 coset fields. We show that, in combination with gauge-invariant and E11-invariant duality equations, this pseudo-Lagrangian reduces to the bosonic sector of non-linear eleven-dimensional supergravity for one choice of solution to the section condi- tion. For another choice, we reobtain the E8 exceptional field theory and conjecture that our pseudo-Lagrangian and duality equations produce all exceptional field theories with maximal supersymmetry in any dimension. We also describe how the theory entails non-linear equations for higher dual fields, including the dual graviton in eleven dimensions. Furthermore, we speculate on the relation to the E10 sigma model.


Sign in / Sign up

Export Citation Format

Share Document