scholarly journals Combining Multiple Biometric Traits Using Asymmetric Aggregation Operators for Improved Person Recognition

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 444
Author(s):  
Abderrahmane Herbadji ◽  
Zahid Akhtar ◽  
Kamran Siddique ◽  
Noubeil Guermat ◽  
Lahcene Ziet ◽  
...  

Biometrics is a scientific technology to recognize a person using their physical, behavior or chemical attributes. Biometrics is nowadays widely being used in several daily applications ranging from smart device user authentication to border crossing. A system that uses a single source of biometric information (e.g., single fingerprint) to recognize people is known as unimodal or unibiometrics system. Whereas, the system that consolidates data from multiple biometric sources of information (e.g., face and fingerprint) is called multimodal or multibiometrics system. Multibiometrics systems can alleviate the error rates and some inherent weaknesses of unibiometrics systems. Therefore, we present, in this study, a novel score level fusion-based scheme for multibiometric user recognition system. The proposed framework is hinged on Asymmetric Aggregation Operators (Asym-AOs). In particular, Asym-AOs are estimated via the generator functions of triangular norms (t-norms). The extensive set of experiments using seven publicly available benchmark databases, namely, National Institute of Standards and Technology (NIST)-Face, NIST-Multimodal, IIT Delhi Palmprint V1, IIT Delhi Ear, Hong Kong PolyU Contactless Hand Dorsal Images, Mobile Biometry (MOBIO) face, and Visible light mobile Ocular Biometric (VISOB) iPhone Day Light Ocular Mobile databases have been reported to show efficacy of the proposed scheme. The experimental results demonstrate that Asym-AOs based score fusion schemes not only are able to increase authentication rates compared to existing score level fusion methods (e.g., min, max, t-norms, symmetric-sum) but also is computationally fast.

Author(s):  
Milind E Rane ◽  
Umesh S Bhadade

The paper proposes a t-norm-based matching score fusion approach for a multimodal heterogenous biometric recognition system. Two trait-based multimodal recognition system is developed by using biometrics traits like palmprint and face. First, palmprint and face are pre-processed, extracted features and calculated matching score of each trait using correlation coefficient and combine matching scores using t-norm based score level fusion. Face database like Face 94, Face 95, Face 96, FERET, FRGC and palmprint database like IITD are operated for training and testing of algorithm. The results of experimentation show that the proposed algorithm provides the Genuine Acceptance Rate (GAR) of 99.7% at False Acceptance Rate (FAR) of 0.1% and GAR of 99.2% at FAR of 0.01% significantly improves the accuracy of a biometric recognition system. The proposed algorithm provides the 0.53% more accuracy at FAR of 0.1% and 2.77% more accuracy at FAR of 0.01%, when compared to existing works.


Author(s):  
Mina Farmanbar ◽  
Önsen Toygar

This paper proposes hybrid approaches based on both feature level and score level fusion strategies to provide a robust recognition system against the distortions of individual modalities. In order to compare the proposed schemes, a virtual multimodal database is formed from FERET face and PolyU palmprint databases. The proposed hybrid systems concatenate features extracted by local and global feature extraction methods such as Local Binary Patterns, Log Gabor, Principal Component Analysis and Linear Discriminant Analysis. Match score level fusion is performed in order to show the effectiveness and accuracy of the proposed schemes. The experimental results based on these databases reported a significant improvement of the proposed schemes compared with unimodal systems and other multimodal face–palmprint fusion methods.


2011 ◽  
Vol 48-49 ◽  
pp. 1010-1013 ◽  
Author(s):  
Yong Li ◽  
Jian Ping Yin ◽  
En Zhu

The performance of biometric systems can be improved by combining multiple units through score level fusion. In this paper, different fusion rules based on match scores are comparatively studied for multi-unit fingerprint recognition. A novel fusion model for multi-unit system is presented first. Based on this model, we analyze the five common score fusion rules: sum, max, min, median and product. Further, we propose a new method: square. Note that the performance of these strategies can complement each other, we introduce the mixed rule: square-sum. We prove that square-sum rule outperforms square and sum rules. The experimental results show good performance of the proposed methods.


Author(s):  
MARYAM ESKANDARI ◽  
ÖNSEN TOYGAR ◽  
HASAN DEMIREL

In this paper, a new approach based on score level fusion is presented to obtain a robust recognition system by concatenating face and iris scores of several standard classifiers. The proposed method concatenates face and iris match scores instead of concatenating features as in feature-level fusion. The features from face and iris are extracted using local and global feature extraction methods such as PCA, subspace LDA, spPCA, mPCA and LBP. Transformation-based score fusion and classifier-based score fusion are then involved in the process to obtain, concatenate and classify the matching scores. Different fusion techniques at matching score level, feature level and decision level are compared with the proposed method to emphasize improvement and effectiveness of the proposed method. In order to validate the proposed scheme, a combined database is formed using ORL and BANCA face databases together with CASIA and UBIRIS iris databases. The results based on recognition performance and ROC analysis demonstrate that the proposed score level fusion achieves a significant improvement over unimodal methods and other multimodal face-iris fusion methods.


Author(s):  
Surinder kaur ◽  
Gopal Chaudhary ◽  
Javalkar Dinesh kumar

Nowadays, Biometric systems are prevalent for personal recognition. But due to pandemic COVID 19, it is difficult to pursue a touch-based biometric system. To encourage a touchless biometric system, a less constrained multimodal personal identification system using palmprint and dorsal hand vein is presented. Hand based Touchless recognition system gives a higher user-friendly system and avoids the spread of coronavirus. A method using Convolution Neural Networks(CNN) to extract discriminative features from the data samples is proposed. A pre-trained function PCANeT is used in the experiments to show the performance of the system in fusion scheme. This method doesn’t require keeping the palm in a specific position or at a certain distance like most other papers. Different patches of ROI are used at two different layers of CNN. Fusion of palmprint and dorsal hand vein is done for final result matching. Both Feature level and score level fusion methods are compared. Results shows the accuracy of upto 98.55% and 98.86% and Equal error rate (EER) of upto 1.22% and 0.93% for score level fusion and feature level fusion, respectively. Our method gives higher accurate results in a less constrained environment.


2019 ◽  
Vol 9 (3) ◽  
pp. 167-176 ◽  
Author(s):  
Md Wasiur Rahman ◽  
Fatema Tuz Zohra ◽  
Marina L. Gavrilova

Abstract Computational intelligence firmly made its way into the areas of consumer applications, banking, education, social networks, and security. Among all the applications, biometric systems play a significant role in ensuring an uncompromised and secure access to resources and facilities. This article presents a first multimodal biometric system that combines KINECT gait modality with KINECT face modality utilizing the rank level and the score level fusion. For the KINECT gait modality, a new approach is proposed based on the skeletal information processing. The gait cycle is calculated using three consecutive local minima computed for the distance between left and right ankles. The feature distance vectors are calculated for each person’s gait cycle, which allows extracting the biometric features such as the mean and the variance of the feature distance vector. For Kinect face recognition, a novel method based on HOG features has been developed. Then, K-nearest neighbors feature matching algorithm is applied as feature classification for both gait and face biometrics. Two fusion algorithms are implemented. The combination of Borda count and logistic regression approaches are used in the rank level fusion. The weighted sum method is used for score level fusion. The recognition accuracy obtained for multi-modal biometric recognition system tested on KINECT Gait and KINECT Eurocom Face datasets is 93.33% for Borda count rank level fusion, 96.67% for logistic regression rank-level fusion and 96.6% for score level fusion.


2006 ◽  
Vol 06 (01) ◽  
pp. 101-113 ◽  
Author(s):  
AJAY KUMAR ◽  
DAVID ZHANG

This paper investigates the performance of a bimodal biometric system using fusion of shape and texture. We propose several new hand shape features that can be used to represent the hand shape and improve the performance for hand shape based user authentication. We also demonstrate the usefulness of Discrete Cosine Transform (DCT) coefficients for palmprint authentication. The score level fusion of hand shape and palmprint features using product rule achieves best performance as compared to Max or Sum rule. However the decisions from the Sum, Max, and Product rules can also be combined to further enhance the performance. Thus the fusion of score level decisions, from the multiple strategies, is proposed and investigated. The two hand shapes of an individual are anatomically similar. However, the palmprints from two hands can be combined to further improve performance and is demonstrated in this paper.


Sign in / Sign up

Export Citation Format

Share Document