scholarly journals An Improved Analytical Tuning Rule of a Robust PID Controller for Integrating Systems with Time Delay Based on the Multiple Dominant Pole-Placement Method

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1449 ◽  
Author(s):  
Wei Zhang ◽  
Yue Cui ◽  
Xiangxin Ding

An improved analytical tuning rule of a Proportional-Integral-Derivative (PID) controller for integrating systems with time delay is proposed using the direct synthesis method and multiple dominant pole-placement approach. Different from the traditional multiple dominant pole-placement method, the desired characteristic equation is obtained by placing the third-order dominant poles at −1/λ and placing the second-order non-dominant poles at −5/λ (λ is the tuning parameter). According to root locus theory, the third-order dominant poles and the second-order non-dominant poles are nearly symmetrically located at the two sides of the fifth-order dominant poles. This makes the third-order dominant poles closer to the imaginary axis than the fifth-order dominant poles, which means that, possibly, better performances can be achieved. Analytical formulas of a PID controller with a lead-lag filter are derived. Simple tuning rules are also given to achieve the desired robustness, which is measured by the maximum sensitivity (Ms) value. The proposed method can achieve better performances and maintain better performances when there exist parameters’ perturbation compared with other methods. Simulations for various integrating processes as well as the nonlinear continuous stirred tank reactor (CSTR) model illustrate the applicability and effectiveness of the proposed method.

2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Praveen Kumar Medarametla ◽  
Manimozhi Muthukumarasamy

AbstractA novel Proportional-Integral-Derivative (PID) controller is proposed for stable and unstable first order processes with time delay. The controller is cascaded in series with a second order filter. Polynomial approach is employed to derive the controller and filter parameters. Simple tuning rules are derived by analysing the maximum sensitivity of the control loop. Formulae are provided for initial guess of tuning parameter. The range of tuning parameter around the initial guess and the corresponding range of maximum sensitivity is specified based on time delay to time constant ratio. Promising results are obtained with the proposed method is compared against recently proposed methods in the literature. The comparison is made in terms of various performance indices for servo and regulatory responses separately. The proposed method is implemented for an isothermal chemical reactor at an unstable equilibrium point.


A perturbation calculation, valid in the limit of large separations, of various properties of the 2 pπ state of HeH 2+ is carried out. The total energy and the kinetic and potential energies are calculated to the fifth order, the dipole moment to the third order and the quadrupole moments to the second order and the results compared with those obtained using exact and variationally determined two-centre wave functions. Some results are also given for the 2 pπ u and 3 dπ g states of H + 2 and the influence of nuclear symmetry at large separations is briefly discussed.


2004 ◽  
Vol 1 (2) ◽  
pp. 340-346
Author(s):  
Baghdad Science Journal

Algorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.


1988 ◽  
Vol 32 (02) ◽  
pp. 83-91
Author(s):  
X. M. Wang ◽  
M. L. Spaulding

A two-dimensional potential flow model is formulated to predict the wave field and forces generated by a sere!submerged body in forced heaving motion. The potential flow problem is solved on a boundary fitted coordinate system that deforms in response to the motion of the free surface and the heaving body. The full nonlinear kinematic and dynamic boundary conditions are used at the free surface. The governing equations and associated boundary conditions are solved by a second-order finite-difference technique based on the modified Euler method for the time domain and a successive overrelaxation (SOR) procedure for the spatial domain. A series of sensitivity studies of grid size and resolution, time step, free surface and body grid redistribution schemes, convergence criteria, and free surface body boundary condition specification was performed to investigate the computational characteristics of the model. The model was applied to predict the forces generated by the forced oscillation of a U-shaped cylinder. Numerical model predictions are generally in good agreement with the available second-order theories for the first-order pressure and force coefficients, but clearly show that the third-order terms are larger than the second-order terms when nonlinearity becomes important in the dimensionless frequency range 1≤ Fr≤ 2. The model results are in good agreement with the available experimental data and confirm the importance of the third order terms.


2013 ◽  
Vol 141 (9) ◽  
pp. 3037-3051 ◽  
Author(s):  
Paul D. Williams

Abstract The leapfrog time-stepping scheme makes no amplitude errors when integrating linear oscillations. Unfortunately, the Robert–Asselin filter, which is used to damp the computational mode, introduces first-order amplitude errors. The Robert–Asselin–Williams (RAW) filter, which was recently proposed as an improvement, eliminates the first-order amplitude errors and yields third-order amplitude accuracy. However, it has not previously been shown how to further improve the accuracy by eliminating the third- and higher-order amplitude errors. Here, it is shown that leapfrogging over a suitably weighted blend of the filtered and unfiltered tendencies eliminates the third-order amplitude errors and yields fifth-order amplitude accuracy. It is further shown that the use of a more discriminating (1, −4, 6, −4, 1) filter instead of a (1, −2, 1) filter eliminates the fifth-order amplitude errors and yields seventh-order amplitude accuracy. Other related schemes are obtained by varying the values of the filter parameters, and it is found that several combinations offer an appealing compromise of stability and accuracy. The proposed new schemes are tested in numerical integrations of a simple nonlinear system. They appear to be attractive alternatives to the filtered leapfrog schemes currently used in many atmosphere and ocean models.


Analysis ◽  
2007 ◽  
Vol 27 (1) ◽  
Author(s):  
Yousef Hashem Zahran

The purpose of this paper is twofold. Firstly we carry out a modification of the finite volume WENO (weighted essentially non-oscillatory) scheme of Titarev and Toro [14] and [15].This modification is done by using two fluxes as building blocks in spatially fifth order WENO schemes instead of the second order TVD flux proposed by Titarev and Toro [14] and [15]. These fluxes are the second order TVD flux [19] and the third order TVD flux [20].Secondly, we propose to use these fluxes as a building block in spatially seventh order WENO schemes. The numerical solution is advanced in time by the third order TVD Runge–Kutta method. A way to extend these schemes to general systems of nonlinear hyperbolic conservation laws, in one and two dimension is presented. Systematic assessment of the proposed schemes shows substantial gains in accuracy and better resolution of discontinuities, particularly for problems involving long time evolution containing both smooth and non-smooth features.


Author(s):  
Yu. Popov

We consider hyperquadrics that are internally connected to coequipped hyperbands in the projective space. Specifically, a hyperquadric Qn1 tangent to a hyperplane at the point is called a contiguous hyper quadric of a hyperband if it has a second-order contact with the base surface of the hyperband. In a the third order differential neighborhood of the forming element of the hyperband, two two-parameter bundles of fields of adjoining hyperquadrics are internally invariantly joined, their equations are given in a dot frame. The set of hyperquadrics such that the plane and the plane of Cartan are conjugate with respect to hyperquadric Qn1 is considered. The condition is shown under which the normal of the 2nd kind and the Cartan plane are conjugate with respect to the hyperquadric Qn1 . In addition, the following theorem is proved: normalization of a coequipped regular hyperband has a semi-internal equipment if and only if its normals of the first and second kind are polarly conjugate with respect to the hyperquadric.


Sign in / Sign up

Export Citation Format

Share Document