scholarly journals Rotating 3D Flow of Hybrid Nanofluid on Exponentially Shrinking Sheet: Symmetrical Solution and Duality

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1637
Author(s):  
Liaquat Ali Lund ◽  
Zurni Omar ◽  
Sumera Dero ◽  
Dumitru Baleanu ◽  
Ilyas Khan

This article aims to study numerically the rotating, steady, and three-dimensional (3D) flow of a hybrid nanofluid over an exponentially shrinking sheet with the suction effect. We considered water as base fluid and alumina (Al2O3), and copper (Cu) as solid nanoparticles. The system of governing partial differential equations (PDEs) was transformed by an exponential similarity variable into the equivalent system of ordinary differential equations (ODEs). By applying a three-stage Labatto III-A method that is available in bvp4c solver in the Matlab software, the resultant system of ODEs was solved numerically. In the case of the hybrid nanofluid, the heat transfer rate improves relative to the viscous fluid and regular nanofluid. Two branches were obtained in certain ranges of the involved parameters. The results of the stability analysis revealed that the upper branch is stable. Moreover, the results also indicated that the equations of the hybrid nanofluid have a symmetrical solution for different values of the rotation parameter (Ω).

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Najiyah Safwa Khashi'ie ◽  
Norihan Md Arifin ◽  
Natalia C. Rosca ◽  
Alin V. Rosca ◽  
Ioan Pop

Purpose The purpose of this paper is to study the effects of thermal radiation and homogeneous-heterogeneous reactions in the three-dimensional hybrid nanofluid flow past a permeable stretching/shrinking sheet. Design/methodology/approach The combination of aluminum oxide (Al2O3) and copper (Cu) nanoparticles with total volumetric concentration is numerically analyzed using the existing correlations of hybrid nanofluid. With the consideration that both homogeneous and heterogeneous reactions are isothermal while the diffusion coefficients of both autocatalyst and reactant are same, the governing model is simplified into a set of differential (similarity) equations. Findings Using the bvp4c solver, dual solutions are presented, and the stability analysis certifies the physical/real solution. The findings show that the suction parameter is requisite to induce the steady solution for shrinking parameter. Besides, the fluid concentration owing to the shrinking sheet is diminished with the addition of surface reaction. Originality/value The present findings are novel and can be a reference point to other researchers to further analyze the heat transfer performance and stability of the working fluids.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 878
Author(s):  
Shahirah Abu Bakar ◽  
Norihan Md Arifin ◽  
Najiyah Safwa Khashi’ie ◽  
Norfifah Bachok

The study of hybrid nanofluid and its thermophysical properties is emerging since the early of 2000s and the purpose of this paper is to investigate the flow of hybrid nanofluid over a permeable Darcy porous medium with slip, radiation and shrinking sheet. Here, the hybrid nanofluid consists of Cu/water as the base nanofluid and Al2O3–Cu/water works as the two distinct fluids. The governing ordinary differential equations (ODEs) obtained in this study are converted from a series of partial differential equations (PDEs) by the appropriate use of similarity transformation. Two methods of shooting and bvp4c function are applied to solve the involving physical parameters over the hybrid nanofluid flow. From this study, we conclude that the non-uniqueness of solutions exists through a range of the shrinking parameter, which produces the problem of finding a bigger solution than any other between the upper and lower branches. From the analysis, one can observe the increment of heat transfer rate in hybrid nanofluid versus the traditional nanofluid. The results obtained by the stability of solutions prove that the upper solution (first branch) is stable and the lower solution (second branch) is not stable.


Author(s):  
Oleksandr Ahafonov ◽  
◽  
Daria Chepiga ◽  
Anton Polozhiy ◽  
Iryna Bessarab ◽  
...  

Purpose. Substantiation of expediency and admissibility of use of the simplified calculation models of a coal seam roof for an estimation of its stability under the action of external loadings. Methods. To achieve this purpose, the studies have been performed using the basic principles of the theory of elasticity and bending of plates, in which the coal seam roof is represented as a model of a rectangular plate or a beam with a symmetrical cross-section with different support conditions. Results. To substantiate and select methods for studying the bending deformations of the roof in the coal massif containing the maingates, the three-dimensional base plate model and the beam model are compared, taking into account the kinematic boundary conditions and the influence of external distributed load. Using the theory of plate bending, the equations for determining the deflections of the coal seam roof in three-dimensional basic models under certain assumptions have a large dimension. After the conditional division of the plate into beams of unit width and symmetrical section, when describing the normal deflections of the middle surface of the studied models, the transition from the partial derivative equation to the usual differential equations is carried out. In this case, the studies of bending deformations of roof rocks are reduced to solving a flat problem in the cross-section of the beam. A comparison of solutions obtained by the methods of the three-dimensional theory of elasticity and strength of materials was performed. For a beam with a symmetrical section, the deflection lies in a plane whose angle of inclination coincides with the direction of the applied load. The calculations did not take into account the difference between the intensity of the surface load applied to the beam. Differences in determining the magnitude of the deflections of the roof in the model of the plate concerning the model of the beam reach 5%, which is acceptable for mining problems. Scientific novelty. To study the bending deformations and determine the magnitude of the roof deflection in models under external uniform distributed load, placed within the simulated plate, a strip of unit width was selected, which has a symmetrical cross-section and is a characteristic component of the plate structure and it is considered as a separate load-bearing element with supports, the cross-sections of this element is remained flat when bending. The deflection of such a linear element is described by the differential equations of the bent axis of the beam without taking into account the integral stiffness of the model, and the vector of its complete displacement coincides with the vector of the force line. Practical significance. In the laboratory, to study the bending deformations and their impact on the stability of the coal seam roof under external loads, it is advisable to use a model of a single width beam with a symmetrical section with supports, the type of which is determined by rock pressure control and secondary support of the maingate at the extraction layout of the coal mine.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liaquat Ali Lund ◽  
Zurni Omar ◽  
Ilyas Khan

Purpose The purpose of this study is to find the multiple branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid perfusing a porous medium over the stretching/shrinking surface. The extended model of Darcy due to Forchheimer and Brinkman has been considered to make the hybrid nanofluid model over the pores by considering the porosity and permeability effects. Design/methodology/approach The Tiwari and Das model with the thermophysical properties of spherical particles for efficient dynamic viscosity of the nanoparticle is used. The linear similarity transformations are applied to convert the partial differential equations into ordinary differential equations (ODEs). The system of governing ODEs is solved by using the three-stage Lobatto IIIa scheme in MATLAB for evolving parameters. Findings The system of governing ODEs produces dual branches. A unique stable branch is identified with help of stability analysis. The reduced heat transfer rate has been shown to increase with the reduced ϕ2 in both branches. Further, results revealed that the presence of multiple branches depends on the ranges of porosity, suction and stretching/shrinking parameters for the particular value of the rotating parameter. Originality/value Dual branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid have been found. Therefore, stability analysis of the branches is also conducted to know which branch is appropriate for the practical applications. To the best of the authors’ knowledge, this research is novel and there is no previously published work relevant to the present study.


2021 ◽  
Vol 10 (9) ◽  
pp. 3273-3282
Author(s):  
M.E.H. Hafidzuddin ◽  
R. Nazar ◽  
N.M. Arifin ◽  
I. Pop

The problem of steady laminar three-dimensional stagnation-point flow on a permeable stretching/shrinking sheet with second order slip flow model is studied numerically. Similarity transformation has been used to reduce the governing system of nonlinear partial differential equations into the system of ordinary (similarity) differential equations. The transformed equations are then solved numerically using the \texttt{bvp4c} function in MATLAB. Multiple solutions are found for a certain range of the governing parameters. The effects of the governing parameters on the skin friction coefficients and the velocity profiles are presented and discussed. It is found that the second order slip flow model is necessary to predict the flow characteristics accurately.


Author(s):  
Yap Bing Kho ◽  
Rahimah Jusoh ◽  
Mohd Zuki Salleh ◽  
Muhammad Khairul Anuar Mohamed ◽  
Zulkhibri Ismail ◽  
...  

The effects of viscous dissipation on the boundary layer flow of hybrid nanofluids have been investigated. This study presents the mathematical modelling of steady two dimensional boundary layer flow of Cu-TiO2 hybrid nanofluid. In this research, the surface of the model is stretched and shrunk at the specific values of stretching/shrinking parameter. The governing partial differential equations of the hybrid nanofluid are reduced to the ordinary differential equations with the employment of the appropriate similarity transformations. Then, Matlab software is used to generate the numerical and graphical results by implementing the bvp4c function. Subsequently, dual solutions are acquired through the exact guessing values. It is observed that the second solution adhere to less stableness than first solution after performing the stability analysis test. The existence of viscous dissipation in this model is dramatically brought down the rate of heat transfer. Besides, the effects of the suction and nanoparticles concentration also have been highlighted. An increment in the suction parameter enhances the magnitude of the reduced skin friction coefficient while the augmentation of concentration of copper and titanium oxide nanoparticles show different modes.


2020 ◽  
Vol 66 ◽  
pp. 157-171 ◽  
Author(s):  
Najiyah Safwa Khashi'ie ◽  
Norihan Md Arifin ◽  
Ioan Pop ◽  
Roslinda Nazar ◽  
Ezad Hafidz Hafidzuddin ◽  
...  

2019 ◽  
Vol 30 (3) ◽  
pp. 1345-1364 ◽  
Author(s):  
Mohamad Mustaqim Junoh ◽  
Fadzilah Md Ali ◽  
Norihan Md Arifin ◽  
Norfifah Bachok ◽  
Ioan Pop

Purpose The purpose of this paper is to investigate the steady magnetohydrodynamics (MHD) boundary layer stagnation-point flow of an incompressible, viscous and electrically conducting fluid past a stretching/shrinking sheet with the effect of induced magnetic field. Design/methodology/approach The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations via the similarity transformations before they are solved numerically using the “bvp4c” function in MATLAB. Findings It is found that there exist non-unique solutions, namely, dual solutions for a certain range of the stretching/shrinking parameters. The results from the stability analysis showed that the first solution (upper branch) is stable and valid physically, while the second solution (lower branch) is unstable. Practical implications This problem is important in the heat transfer field such as electronic cooling, engine cooling, generator cooling, welding, nuclear system cooling, lubrication, thermal storage, solar heating, cooling and heating in buildings, biomedical, drug reduction, heat pipe, space aircrafts and ships with better efficiency than that of nanofluids applicability. The results obtained are very useful for researchers to determine which solution is physically stable, whereby, mathematically more than one solution exist. Originality/value The present results are new and original for the problem of MHD stagnation-point flow over a stretching/shrinking sheet in a hybrid nanofluid, with the effect of induced magnetic field.


2019 ◽  
Vol 97 (4) ◽  
pp. 392-399 ◽  
Author(s):  
S. Nadeem ◽  
Nadeem Abbas

The physical model of the micropolar hybrid nanofluid flow with magnetohydrodynamic and thermal slip effects is considered. The flow of three-dimensional stagnation point of micropolar hybrid nanofluid past a circular cylinder is also taken into account. The flow model is controlled through partial differential equations. These equations are highly nonlinear in character and reduce to ordinary differential equations through applying the suitable similarity transformation. The reduced system is solved numerically using the shooting technique. The mutual effects are presented using graphs while comparative numerical results are presented in the tables. The diverse physical parts of the issue have been talked about. This study aims to investigate the solid nano-sized particle on the surface of a circular cylinder having sinusoidal variation. These nanosized particles are used to analyze the heat transfer improvement of micropolar hybrid nanofluid as compared to micropolar nanofluid.


Sign in / Sign up

Export Citation Format

Share Document