scholarly journals Adaptation of a Cost Overrun Risk Prediction Model to the Type of Construction Facility

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1739 ◽  
Author(s):  
Edyta Plebankiewicz ◽  
Damian Wieczorek

To assess the risk of project cost overrun, it is necessary to consider large amounts of symmetric and asymmetric data. This paper proposes a cost overrun risk prediction model, the structure of which is based on the fuzzy inference model of Mamdani. The model consists of numerous inputs and one output (multi-input-single-output (MISO)), based on processes running consecutively in three blocks (the fuzzy block, the interference block, and the block of sharpening the representative output value). The input variables of the model include the share of element costs in the building costs (SE), predicted changes in the number of works (WC), and expected changes in the unit price (PC). For the input variable SE, it is proposed to adjust the fuzzy set shapes to the type of building object. Single-family residential buildings, multi-family residential buildings, office buildings, highways, expressways, and sports fields were analyzed. The initial variable is the value of the risk of exceeding the costs of a given element of a construction investment project (R). In all, 27 rules were assumed in the interference block. Considering the possibility of applying sharpening methods in the cost overrun risk prediction model, the following defuzzification methods were investigated: the first of maxima, middle of maxima, and last of maxima method, the center of gravity method, and the bisector area method. Considering the advantages and disadvantages, the authors assumed that the correct and basic defuzzification method in the cost overrun risk prediction model was the center of gravity method. In order to check the correctness of the assumption made at the stage of designing the rule database, result diagrams were generated for the relationships between the variable (R) and the input variables of individual types of buildings. The results obtained confirm the correctness of the assumed assumptions and allow to consider the input variable (SE), adjusted individually to the model for each type of construction object, as crucial in the context of the impact on the output value of the output variable (R).

2020 ◽  
Vol 4 (5) ◽  
Author(s):  
Sibel Saya ◽  
Jon D Emery ◽  
James G Dowty ◽  
Jennifer G McIntosh ◽  
Ingrid M Winship ◽  
...  

Abstract Background In many countries, population colorectal cancer (CRC) screening is based on age and family history, though more precise risk prediction could better target screening. We examined the impact of a CRC risk prediction model (incorporating age, sex, lifestyle, genomic, and family history factors) to target screening under several feasible screening scenarios. Methods We estimated the model’s predicted CRC risk distribution in the Australian population. Predicted CRC risks were categorized into screening recommendations under 3 proposed scenarios to compare with current recommendations: 1) highly tailored, 2) 3 risk categories, and 3) 4 sex-specific risk categories. Under each scenario, for 35- to 74-year-olds, we calculated the number of CRC screens by immunochemical fecal occult blood testing (iFOBT) and colonoscopy and the proportion of predicted CRCs over 10 years in each screening group. Results Currently, 1.1% of 35- to 74-year-olds are recommended screening colonoscopy and 56.2% iFOBT, and 5.7% and 83.2% of CRCs over 10 years were predicted to occur in these groups, respectively. For the scenarios, 1) colonoscopy was recommended to 8.1% and iFOBT to 37.5%, with 36.1% and 50.1% of CRCs in each group; 2) colonoscopy was recommended to 2.4% and iFOBT to 56.0%, with 13.2% and 76.9% of cancers in each group; and 3) colonoscopy was recommended to 5.0% and iFOBT to 54.2%, with 24.5% and 66.5% of cancers in each group. Conclusions A highly tailored CRC screening scenario results in many fewer screens but more cancers in those unscreened. Category-based scenarios may provide a good balance between number of screens and cancers detected and are simpler to implement.


Author(s):  
Nuur Azreen Paiman ◽  
◽  
Azian Hariri ◽  
Ibrahim Masood ◽  
Arma Noor ◽  
...  

2021 ◽  
Vol 79 ◽  
pp. S1112-S1113
Author(s):  
A.A. Nasrallah ◽  
M. Mansour ◽  
C.H. Ayoub ◽  
N. Abou Heidar ◽  
J.A. Najdi ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Jessica K. Sexton ◽  
Michael Coory ◽  
Sailesh Kumar ◽  
Gordon Smith ◽  
Adrienne Gordon ◽  
...  

Abstract Background Despite advances in the care of women and their babies in the past century, an estimated 1.7 million babies are born still each year throughout the world. A robust method to estimate a pregnant woman’s individualized risk of late-pregnancy stillbirth is needed to inform decision-making around the timing of birth to reduce the risk of stillbirth from 35 weeks of gestation in Australia, a high-resource setting. Methods This is a protocol for a cross-sectional study of all late-pregnancy births in Australia (2005–2015) from 35 weeks of gestation including 5188 stillbirths among 3.1 million births at an estimated rate of 1.7 stillbirths per 1000 births. A multivariable logistic regression model will be developed in line with current TransparentReporting of a multivariable prediction model forIndividualPrognosis orDiagnosis (TRIPOD) guidelines to estimate the gestation-specific probability of stillbirth with prediction intervals. Candidate predictors were identified from systematic reviews and clinical consultation and will be described through univariable regression analysis. To generate a final model, elimination by backward stepwise multivariable logistic regression will be performed. The model will be internally validated using bootstrapping with 1000 repetitions and externally validated using a temporally unique dataset. Overall model performance will be assessed with R2, calibration, and discrimination. Calibration will be reported using a calibration plot with 95% confidence intervals (α = 0.05). Discrimination will be measured by the C-statistic and area underneath the receiver-operator curves. Clinical usefulness will be reported as positive and negative predictive values, and a decision curve analysis will be considered. Discussion A robust method to predict a pregnant woman’s individualized risk of late-pregnancy stillbirth is needed to inform timely, appropriate care to reduce stillbirth. Among existing prediction models designed for obstetric use, few have been subject to internal and external validation and many fail to meet recommended reporting standards. In developing a risk prediction model for late-gestation stillbirth with both providers and pregnant women in mind, we endeavor to develop a validated model for clinical use in Australia that meets current reporting standards.


CHEST Journal ◽  
2019 ◽  
Vol 156 (1) ◽  
pp. 112-119 ◽  
Author(s):  
Heber MacMahon ◽  
Feng Li ◽  
Yulei Jiang ◽  
Samuel G. Armato

Sign in / Sign up

Export Citation Format

Share Document