scholarly journals Investigation of Position and Velocity Stability of the Nanometer Resolution Linear Motor Stage with Air Bearings by Shaping of Controller Transfer Function

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2062
Author(s):  
Artur Piščalov ◽  
Edgaras Urbonas ◽  
Nikolaj Višniakov ◽  
Darius Zabulionis ◽  
Artūras Kilikevičius

Modern industrial enterprises require high accuracy and precision feedback systems to fulfil cutting edge requirements of technological processes. As demand for a highly accurate system grows, a thin gap between throughput and quality exists. The conjunction of ultrafast lasers and modern control strategies of mechatronic systems can be taken into account as an effective solution to reach both throughput and tolerances. In the present paper, the dynamic errors of the moving platform of the one degree of freedom stage, based on linear motor and air bearings, have been analyzed. A precision positioning system is investigated as a symmetric system which is based on symmetric linear motor. The goal of the present article is to investigate the controllers of the different architecture and to find the best controller that can ensure a stable and small dynamic error of the displacement of the stage platform at four different constant velocities of the moving platform. The relations between the controller order, velocity and the displacement dynamic error have been investigated. It is determined that higher-order controllers can reduce the dynamic error significantly at low velocities of the moving platforms: 1 and 5 mm/s. On the contrary, the low order controllers of 4th-degree polynomials of the transfer function can also provide small dynamic errors of the displacement of the platform.

2000 ◽  
Author(s):  
Chensong Dong ◽  
Chuck Zhang ◽  
Ben Wang ◽  
Guoxiong Zhang

Abstract Coordinate measuring machines (CMMs) are already widely used as a measuring tool in the manufacturing industry. Fast probing is now the trend for next generation CMMs. However, increases in the measuring velocity of CMMs are limited by dynamic errors that occur in CMMs. In this paper, theoretical analysis and experimental research is used to create a systematic approach for modeling the dynamic errors of a touch-trigger probe CMM. First, an overall analysis of the dynamic errors of CMMs is given, and methods to improve the stiffness of air bearings are presented. Weak elements of the CMM are identified with a laser interferometer. The probing process, as conducted with a touch-trigger probe, is analyzed and dynamic errors are measured. Based on these analyses, the dynamic errors in touch-trigger probing are modeled using neural networks. In turn, dynamic errors are predicted. An approach to achieving software error compensation is discussed. Finally, the method and results from this study illustrate that it is possible to compensate for dynamic errors of CMMs.


Author(s):  
Daocheng Yuan ◽  
Xin Tao ◽  
Caijun Xie ◽  
Huiying Zhao ◽  
Dongxu Ren ◽  
...  

Error compensation technology is used for improving accuracy and reducing costs. Dynamic error compensation techniques of coordinate measuring machine (CMM) are still under study; the major problem is a lack of suitable models, which would be able to correctly and simply relate the dynamic errors with the structural and operational parameters. To avoid the complexity of local dynamic deformation measurement and modeling, a comprehensive calibration method is employed. Experimental research reveals specific qualities of dynamic Abbe errors; the results exceed the scope of ISO 10360-2 calibration method, showing the ISO 10360-2 dynamic error evaluation deficiencies. For calibrating the dynamic Abbe errors, the differential measurement method is presented based on the measurements of the internal and external dimensions. Referring probe tip radius correction, the dynamic Abbe errors compensation method is proposed for CMM end-users and is easy to use.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Chin-Tsung Hsieh ◽  
Jen Shiu

As the photovoltaic system consists of many equipment components, manual inspection will be very costly. This study proposes the photovoltaic system fault diagnosis based on chaotic signal synchronization. First, MATLAB was used to simulate the fault conditions of solar system, and the maximum power point tracking (MPPT) was used to ensure the system's stable power and capture and record the system fault feature signals. The dynamic errors of various fault signals were extracted by chaotic signal synchronization, and the dynamic error data of various fault signals were recorded completely. In the photovoltaic system, the captured output voltage signal was used as the characteristic values for fault recognition, and the extension theory was used to create the joint domain and classical domain of various fault conditions according to the collected feature data. The matter-element model of extension engineering was constructed. Finally, the whole fault diagnosis system is only needed to capture the voltage signal of the solar photovoltaic system, so as to know the exact fault condition effectively and rapidly. The proposed fault diagnostor can be implemented by embedded system and be combined with ZigBee wireless network module in the future, thus reducing labor cost and building a complete portable renewable energy system fault diagnostor.


2021 ◽  
Vol 346 ◽  
pp. 03051
Author(s):  
N. K. Kuznetsov ◽  
I. A. Iov ◽  
A. A. Iov ◽  
E. S. Dolgih

In this paper, using the example of a two-mass calculation scheme, which can be used to describe the dynamic properties of many mechatronic systems with elastic elements, we present the results of research on finding control actions that provide compensation of dynamic errors based on solving the inverse dynamic problems according to a given law of change of the force in an elastic element. It is shown that the found control actions in the form of time dependences make it possible not to impose any restrictions on the methods of their technical implementation and thereby provide a comprehensive solution the problem of compensating for dynamic errors caused by elastic deformations of mechanical elements.


Author(s):  
Vijay Srivatsan ◽  
Reuven Katz ◽  
Debasish Dutta ◽  
Bartosz Powałka

High-precision non-contact dimensional inspection systems typically utilize high-precision motion stages to manipulate the sensor. Such motion stages are susceptible to position errors, which need to be characterized. While geometric and thermal errors can be characterized and compensated, compensation of dynamic errors is a challenging task. This paper presents a method for dynamic error characterization that is significantly different from dynamic error characterization on contact-based systems. A mathematical model to translate the vibrations on the sensor to the measurement errors on the part is presented. Through experiments on a four-axis system, a relationship between sensor motion speed, sampling frequency, and measurement accuracy is derived. The results of the experiments are used to describe the selection of optimal operating parameters for best accuracy and least uncertainty.


Author(s):  
Lei Yang ◽  
Xing Zhang ◽  
Lei Wang ◽  
Wanhua Zhao

During the working process of high-speed multiaxis machine tools, inertial forces can cause vibration and deformation of mechanical structure, which lead to the dynamic error of tool center point (TCP) relative to worktable and can adversely affect the machining performance. Considering the varying feed positions and accelerations during machining, a parameter-varying multi-rigid-body dynamic model of a 3-axis gantry machine tool is proposed. This model represents the position dependent structural dynamics and inertial forces, which can simulate the dynamic error of TCP relative to worktable within the entire workspace. The results show that the dynamic error in one direction is affected by the feed motions of multiple feed axes. The magnitudes of the dynamic error significantly vary with the position of Z-axis. And the dynamic errors in Y- and Z-direction show different varying trends. Then the theoretical model is used to discuss the dynamic error and position dependency. The expressions of TCP dynamic response and inertial forces reveal the reason why the dynamic errors in Y- and Z-direction show different varying trends.


2014 ◽  
Vol 620 ◽  
pp. 96-103
Author(s):  
Guo Da Chen ◽  
Ying Chun Liang ◽  
He Ran Wang ◽  
Ya Zhou Sun ◽  
Jia Xuan Chen

In some special fields such as precision optics, the part surface has strict requirements on the frequency domain errors, besides the conventional spatial domain errors such as surface roughness error. In light of the available works lacking of the frequency domain error analysis in ultra-precision flycutting, this paper therefore presents its frequency domain error analysis. A case study of KDP crystal flycutting is carried out to show its detailed processes, where the processing parameters, tool geometry, motion dynamic error of the machine guideway and tool-work vibration induced dynamic error are considered. A surface profile generation method is put forward. Two cases with different tool-work vibration frequencies are carried out. The spatial frequency spectrum is obtained based on the FFT analysis of the generated profile in the specified direction. After the in-depth analysis, the inherent correlation of the generated spatial frequency components with feed spatial frequency and machine dynamic errors induced spatial frequency under certain machining conditions are found, which is very meaningful for the frequency domain error prediction in the real application. The proposed analysis method can also be applied into other types of surface machining.


1992 ◽  
Vol 31 (3) ◽  
pp. 855-860 ◽  
Author(s):  
Ren Chiou Chang ◽  
Shih Haur Shen ◽  
Cheng Ching Yu

Sign in / Sign up

Export Citation Format

Share Document