scholarly journals Lateralized Declarative-Like Memory for Conditional Spatial Information in Domestic Chicks (Gallus gallus)

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 906
Author(s):  
Maria Loconsole ◽  
Elena Mascalzoni ◽  
Jonathan Niall Daisley ◽  
Massimo De Agrò ◽  
Giorgio Vallortigara ◽  
...  

Declarative memory is an explicit, long-term memory system, used in generalization and categorization processes and to make inferences and to predict probable outcomes in novel situations. Animals have been proven to possess a similar declarative-like memory system. Here, we investigated declarative-like memory representations in young chicks, assessing the roles of the two hemispheres in memory recollection. Chicks were exposed for three consecutive days to two different arenas (blue/yellow), where they were presented with two panels, each depicting a different stimulus (cross/square). Only one of the two stimuli was rewarded, i.e., it hid a food reward. The position (left/right) of the rewarded stimulus remained constant within the same arena, but it differed between the two arenas (e.g., reward always on the left in the blue context and on the right in the yellow one). At test, both panels depicted the rewarded stimulus, thus chicks had to remember food position depending on the previously experienced contextual rule. Both binocular and right-eye monocularly-tested chicks correctly located the reward, whereas left-eye monocularly-tested chicks performed at the chance level. We showed that declarative-like memory of integrated information is available at early stages of development, and it is associated with a left hemisphere dominance.

2020 ◽  
Author(s):  
John J Shaw ◽  
Zhisen Urgolites ◽  
Padraic Monaghan

Visual long-term memory has a large and detailed storage capacity for individual scenes, objects, and actions. However, memory for combinations of actions and scenes is poorer, suggesting difficulty in binding this information together. Sleep can enhance declarative memory of information, but whether sleep can also boost memory for binding information and whether the effect is general across different types of information is not yet known. Experiments 1 to 3 tested effects of sleep on binding actions and scenes, and Experiments 4 and 5 tested binding of objects and scenes. Participants viewed composites and were tested 12-hours later after a delay consisting of sleep (9pm-9am) or wake (9am-9pm), on an alternative forced choice recognition task. For action-scene composites, memory was relatively poor with no significant effect of sleep. For object-scene composites sleep did improve memory. Sleep can promote binding in memory, depending on the type of information to be combined.


2001 ◽  
Vol 92 (1) ◽  
pp. 223-233
Author(s):  
D. P. McCabe ◽  
D. I. Ben-Tovim ◽  
M. K. Walker ◽  
D. Pomeroy

Do the mental Images of 3-dimensional objects recreate the depth characteristics of the original objects' This investigation of the characteristics of mental images utilized a novel boundary-detection task that required participants to relate a pair of crosses to the boundary of an image mentally projected onto a computer screen. 48 female participants with body attitudes within expected normal range were asked to image their own body and a familiar object from the front and the side. When the visual mental image was derived purely from long-term memory, accuracy was better than chance for the front (64%) and side (63%) of the body and also for the front (55%) and side (68%) of the familiar nonbody object. This suggests that mental images containing depth and spatial information may be generated from information held in long-term memory. Pictorial exposure to views of the front or side of the objects was used to investigate the representations from which this 3-dimensional shape and size information is derived. The results are discussed in terms of three possible representational formats and argue that a front-view 2½-dimensional representation mediates the transfer of information from long-term memory when depth information about the body is required.


2020 ◽  
pp. 311-332
Author(s):  
Nicole Hakim ◽  
Edward Awh ◽  
Edward K. Vogel

Visual working memory allows us to maintain information in mind for use in ongoing cognition. Research on visual working memory often characterizes it within the context of its interaction with long-term memory (LTM). These embedded-processes models describe memory representations as existing in three potential states: inactivated LTM, including all representations stored in LTM; activated LTM, latent representations that can quickly be brought into an active state due to contextual priming or recency; and the focus of attention, an active but sharply limited state in which only a small number of items can be represented simultaneously. This chapter extends the embedded-processes framework of working memory. It proposes that working memory should be defined operationally based on neural activity. By defining working memory in this way, the important theoretical distinction between working memory and LTM is maintained, while still acknowledging that they operate together. It is additionally proposed that active working memory should be further subdivided into at least two subcomponent processes that index item-based storage and currently prioritized spatial locations. This fractionation of working memory is based on recent research that has found that the maintenance of information distinctly relies on item-based representations as well as prioritization of spatial locations. It is hoped that this updated framework of the definition of working memory within the embedded-processes model provides further traction for understanding how we maintain information in mind.


2020 ◽  
pp. 150-174 ◽  
Author(s):  
André Vandierendonck

The working memory model with distributed executive control accounts for the interactions between working memory and multi-tasking performance. The working memory system supports planned actions by relying on two capacity-limited domain-general and two time-limited domain-specific modules. Domain-general modules are the episodic buffer and the executive module. The episodic buffer stores multimodal representations and uses attentional refreshment to counteract information loss and to consolidate information in episodic long-term memory. The executive module maintains domain-general information relevant for the current task. The phonological buffer and the visuospatial module are domain specific; the former uses inner speech to maintain and to rehearse phonological information, whereas the latter holds visual and spatial representations active by means of image revival. For its operation, working memory interacts with declarative and procedural long-term memory, gets input from sensory registers, and uses the motor system for output.


2020 ◽  
Vol 10 (12) ◽  
pp. 937
Author(s):  
Soyiba Jawed ◽  
Hafeez Ullah Amin ◽  
Aamir Saeed Malik ◽  
Ibrahima Faye

The hemispherical encoding retrieval asymmetry (HERA) model, established in 1991, suggests that the involvement of the right prefrontal cortex (PFC) in the encoding process is less than that of the left PFC. The HERA model was previously validated for episodic memory in subjects with brain traumas or injuries. In this study, a revised HERA model is used to investigate long-term memory retrieval from newly learned video-based content for healthy individuals using electroencephalography. The model was tested for long-term memory retrieval in two retrieval sessions: (1) recent long-term memory (recorded 30 min after learning) and (2) remote long-term memory (recorded two months after learning). The results show that long-term memory retrieval in healthy individuals for the frontal region (theta and delta band) satisfies the revised HERA asymmetry model.


2016 ◽  
Vol 20 (4) ◽  
pp. 687-688 ◽  
Author(s):  
PHILLIP HAMRICK ◽  
MICHAEL T. ULLMAN

Cunnings (Cunnings) offers an interpretation of L2-L1 sentence processing differences in terms of memory principles. We applaud such cross-domain approaches, which seem likely to significantly elucidate the neurocognition of language. Cunnings attributes sentence processing differences between (adult) high proficiency L2 and L1 speakers to an increased susceptibility to similarity-based retrieval interference, rather than to qualitative L2-L1 processing differences (cf. Clahsen & Felser, 2006). On his account, both L1 and L2 sentence processing depend upon a ‘bipartite’ working memory, which involves maintaining items active by focusing attention on long-term memory representations (Cowan, 2001).


Author(s):  
Michael E. Brown ◽  
Jennie J. Gallimore

Subjects memorized the shape of a static 3-D object displayed on a stereoscopic CRT. In each of a series of trials that followed, single static objects were presented. The angular orientation of each trial object was one of six 36-degree increments relative to the angle of the memorized stimulus. The subject's task was to determine, as quickly and accurately as possible, whether the trial object was the same shape as the memorized object or its mirrored image. One of the two cases was always true. Disparity and interposition were manipulated in a within-subject manner during the initial memorization period and the trials that followed. Subject response time and error rate were evaluated. The experimental objective was to determine the extent to which stereopsis and hidden surface affect subjects' ability to 1) transfer to and retrieve from long-term memory spatial information about a 3-D object, and 2) visualize spatial characteristics in a quick and direct manner. Improved performance due to hidden surface is the most convincing experimental finding. The study also found a significant but limited stereopsis effect.


2012 ◽  
Vol 19 (2) ◽  
pp. 258-263 ◽  
Author(s):  
Stephen Darling ◽  
Richard J. Allen ◽  
Jelena Havelka ◽  
Aileen Campbell ◽  
Emma Rattray

2013 ◽  
Vol 21 (6) ◽  
pp. 682-685
Author(s):  
Kao-Wei Chua ◽  
Daniel N. Bub ◽  
Michael E. J. Masson ◽  
Isabel Gauthier

Sign in / Sign up

Export Citation Format

Share Document