scholarly journals Evaluation of Shear Stress Transport, Large Eddy Simulation and Detached Eddy Simulation for the Flow around a Statically Loaded Tire

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1319
Author(s):  
Haichao Zhou ◽  
Huiyun Li ◽  
Qingyun Chen ◽  
Lingxin Zhang

To select a more suitable turbulence model to study tire aerodynamics, the characteristics of a deformed profile of a 185/65 R14 passenger tire were reproduced using 3D printing technology. Based on the distance from automobile chassis to the ground, a partially loaded tire model with a height of 150 mm was selected in this paper, and the surface pressure coefficient of the tire model was determined using a wind tunnel test. A computational fluid dynamics (CFD) model was established according to the tire wind tunnel test. The surface pressure coefficient results of three turbulence models, shear stress transport (SST) k-ω, large eddy simulation (LES), and detached eddy simulation (DES) were obtained. Compared with the wind tunnel test results, the mean relative errors of the surface pressure coefficients predicted using SST, LES, and DES in the longitudinal section were 22.4%, 20.9%, and 14.8%, respectively. The LES and DES can capture details of the unsteady flow field that were not predicted by SST. By synthetically analyzing the results of the surface pressure coefficient and flow fields, the DES model is more advantageous than the other two models in predicting the flow characteristics around a statically loaded tire. This study can help designers in the tire industry to apply these cost-effective tools for minimizing the aerodynamic drag of a new tire design.

2002 ◽  
Vol 124 (4) ◽  
pp. 911-923 ◽  
Author(s):  
James R. Forsythe ◽  
Klaus A. Hoffmann ◽  
Russell M. Cummings ◽  
Kyle D. Squires

Detached-eddy simulation is applied to an axisymmetric base flow at supersonic conditions. Detached-eddy simulation is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes and large-eddy simulation approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras turbulence model or Menter’s shear stress transport model; in the large-eddy simulation mode, it is based on the Smagorinski subgrid scale model. The intended application of detached-eddy simulation is the treatment of massively separated, high-Reynolds number flows over complex configurations (entire aircraft, automobiles, etc.). Because of the intented future application of the methods to complex configurations, Cobalt, an unstructured grid Navier-Stokes solver, is used. The current work incorporates compressible shear layer corrections in both the Spalart-Allmaras and shear stress transport-based detached-eddy simulation models. The effect of these corrections on both detached-eddy simulation and Reynolds-averaged Navier-Stokes models is examined, and comparisons are made to the experiments of Herrin and Dutton. Solutions are obtained on several grids—both structured and unstructured—to test the sensitivity of the models and code to grid refinement and grid type. The results show that predictions of base flows using detached-eddy simulation compare very well with available experimental data, including turbulence quantities in the wake of the axisymmetric body.


Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 246
Author(s):  
Rozie Zangeneh

The Wall-modeled Large-eddy Simulation (WMLES) methods are commonly accompanied with an underprediction of the skin friction and a deviation of the velocity profile. The widely-used Improved Delayed Detached Eddy Simulation (IDDES) method is suggested to improve the prediction of the mean skin friction when it acts as WMLES, as claimed by the original authors. However, the model tested only on flow configurations with no heat transfer. This study takes a systematic approach to assess the performance of the IDDES model for separated flows with heat transfer. Separated flows on an isothermal wall and walls with mild and intense heat fluxes are considered. For the case of the wall with heat flux, the skin friction and Stanton number are underpredicted by the IDDES model however, the underprediction is less significant for the isothermal wall case. The simulations of the cases with intense wall heat transfer reveal an interesting dependence on the heat flux level supplied; as the heat flux increases, the IDDES model declines to predict the accurate skin friction.


Author(s):  
N Kharoua ◽  
L Khezzar

Large eddy simulation of turbulent flow around smooth and rough hemispherical domes was conducted. The roughness of the rough dome was generated by a special approach using quadrilateral solid blocks placed alternately on the dome surface. It was shown that this approach is capable of generating the roughness effect with a relative success. The subgrid-scale model based on the transport of the subgrid turbulent kinetic energy was used to account for the small scales effect not resolved by large eddy simulation. The turbulent flow was simulated at a subcritical Reynolds number based on the approach free stream velocity, air properties, and dome diameter of 1.4 × 105. Profiles of mean pressure coefficient, mean velocity, and its root mean square were predicted with good accuracy. The comparison between the two domes showed different flow behavior around them. A flattened horseshoe vortex was observed to develop around the rough dome at larger distance compared with the smooth dome. The separation phenomenon occurs before the apex of the rough dome while for the smooth dome it is shifted forward. The turbulence-affected region in the wake was larger for the rough dome.


Author(s):  
L. D. Browne ◽  
P. Griffin ◽  
M. T. Walsh

Hemodialysis patients require a vascular access capable of accommodating the high blood flow rates required for effective dialysis treatment. The arteriovenous graft is one such access. However, this access type suffers from reduced one year primary & secondary patency rates of 59–90% and 50–82% respectively [1]. The main contributor to the failure of this access is stenosis via the development of intimal hyperplasia (IH) that predominately occurs at the venous anastomosis. It is hypothesized that the resulting transitional to turbulent flow regime within the venous anastomosis contributes to the development of IH. The aim of this study is to investigate the influence of this transitional to turbulent behavior on wall shear stress within the venous anastomosis via the use of large eddy simulation.


2001 ◽  
Vol 446 ◽  
pp. 309-320 ◽  
Author(s):  
IVAN MARUSIC ◽  
GARY J. KUNKEL ◽  
FERNANDO PORTÉ-AGEL

An experimental investigation was conducted to study the wall boundary condition for large-eddy simulation (LES) of a turbulent boundary layer at Rθ = 3500. Most boundary condition formulations for LES require the specification of the instantaneous filtered wall shear stress field based upon the filtered velocity field at the closest grid point above the wall. Three conventional boundary conditions are tested using simultaneously obtained filtered wall shear stress and streamwise and wall-normal velocities, at locations nominally within the log region of the flow. This was done using arrays of hot-film sensors and X-wire probes. The results indicate that models based on streamwise velocity perform better than those using the wall-normal velocity, but overall significant discrepancies were found for all three models. A new model is proposed which gives better agreement with the shear stress measured at the wall. The new model is also based on the streamwise velocity but is formulated so as to be consistent with ‘outer-flow’ scaling similarity of the streamwise velocity spectra. It is therefore expected to be more generally applicable over a larger range of Reynolds numbers at any first-grid position within the log region of the boundary layer.


Author(s):  
Soshi Kawai

This paper addresses the error in large-eddy simulation with wall-modeling (i.e., when the wall shear stress is modeled and the viscous near-wall layer is not resolved): the error in estimating the wall shear stress from a given outer-layer velocity field using auxiliary near-wall RANS equations where convection is not neglected. By considering the behavior of turbulence length scales near a wall, the cause of the errors is diagnosed and solutions that remove the errors are proposed based solidly on physical reasoning. The resulting method is shown to accurately predict equilibrium boundary layers at very high Reynolds number, with both realistic instantaneous fields (without overly elongated unphysical near-wall structures) and accurate statistics (both skin friction and turbulence quantities).


2019 ◽  
Vol 9 (18) ◽  
pp. 3696 ◽  
Author(s):  
Víctor Hidalgo ◽  
Xavier Escaler ◽  
Esteban Valencia ◽  
Xiaoxing Peng ◽  
José Erazo ◽  
...  

The present paper focuses on the numerical simulation of unsteady cavitation around a NACA66 hydrofoil to improve the understanding of the cavitation effects on hydraulic machinery. For this aim, the Zwart–Gerber–Belamri cavitation model was updated and uploaded as a library file for OpenFOAM’s solvers using C++ language. Furthermore, the hybrid Reynold average Navier–Stokes (RANS)–large eddy simulation (LES) model k - ω SST scale adaptive simulation (SAS) was implemented as a turbulence model for the present study of scale adaptive simulation. For validation, numerical results were compared with experimental results obtained by Leroux at the Naval Academy Research Institute in France. In order to highlight the benefits in terms of computational consumption and reproduction of the phenomenon the k - ω SST SAS model was compared against implicit large eddy simulation (ILES). Results show that the cavitation evolution including the maximum vapor length, the detachment and the oscillation frequency were reproduced satisfactorily using k - ω SST SAS. Moreover, k - ω SST SAS results predicted a lower total vapor volume on time than ILES, which is related to observed pulses of pressure coefficient, C p , and those match fairly well with the experimental results. To summarize, the k - ω SST SAS model predicts with good accuracy unsteady cavitation behavior around hydrofoils and shows improved versatility over the ILES approach.


Sign in / Sign up

Export Citation Format

Share Document