scholarly journals Early Weak Fault Diagnosis of Rolling Bearings Based on Fiber Bragg Grating Sensing Monitoring

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1473
Author(s):  
Xinxin Chen ◽  
Yali Jiang ◽  
Boning Zhou ◽  
Hui Zhan ◽  
Hongwei Li ◽  
...  

Aiming at the problems of weak dynamic response and difficulty in diagnosis of early damage of rolling bearings, a diagnosis method for early damage of rolling bearings is proposed. Taking radial rolling bearings as the main research object, the load symmetric structure of deep groove ball bearings is analyzed. Based on the mechanical second-order system theory, the sensor monitoring structure is constructed. The generalized resonance principle is used to identify weak signals, and the fiber Bragg grating is used for signal sensing. The signal is obtained through the fiber Bragg grating high-speed demodulator. When a continuous periodic generalized resonance wave appears in the amplitude–frequency analysis of the signal, and there is a high-frequency resonance frequency, it can be proved that the bearing is faulty. The diagnosis method can effectively avoid the interference of low-frequency signals, the frequency spectrum is pure and there is no electromagnetic interference. It fully shows that the fiber Bragg grating sensor is suitable for the monitoring and diagnosis of the early weak fault of the bearing.

2018 ◽  
Vol 536 ◽  
pp. 847-849 ◽  
Author(s):  
Akihiko Ikeda ◽  
Toshihiro Nomura ◽  
Yasuhiro H. Matsuda ◽  
Shuntaro Tani ◽  
Yohei Kobayashi ◽  
...  

2021 ◽  
pp. 107413
Author(s):  
Dawei Gao ◽  
Yongsheng Zhu ◽  
Zhijun Ren ◽  
Ke Yan ◽  
Wei Kang

2018 ◽  
Vol 18 (1) ◽  
pp. 334-344 ◽  
Author(s):  
Zhenhua Tian ◽  
Lingyu Yu ◽  
Xiaoyi Sun ◽  
Bin Lin

Fiber Bragg gratings are known being immune to electromagnetic interference and emerging as Lamb wave sensors for structural health monitoring of plate-like structures. However, their application for damage localization in large areas has been limited by their direction-dependent sensor factor. This article addresses such a challenge and presents a robust damage localization method for fiber Bragg grating Lamb wave sensing through the implementation of adaptive phased array algorithms. A compact linear fiber Bragg grating phased array is configured by uniformly distributing the fiber Bragg grating sensors along a straight line and axially in parallel to each other. The Lamb wave imaging is then performed by phased array algorithms without weighting factors (conventional delay-and-sum) and with adaptive weighting factors (minimum variance). The properties of both imaging algorithms, as well as the effects of fiber Bragg grating’s direction-dependent sensor factor, are characterized, analyzed, and compared in details. The results show that this compact fiber Bragg grating array can precisely locate damage in plates, while the comparisons show that the minimum variance method has a better imaging resolution than that of the delay-and-sum method and is barely affected by fiber Bragg grating’s direction-dependent sensor factor. Laboratory tests are also performed with a four–fiber Bragg grating array to detect simulated defects at different directions. Both delay-and-sum and minimum variance methods can successfully locate defects at different positions, and their results are consistent with analytical predictions.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2669 ◽  
Author(s):  
Jingjing Wang ◽  
Li Wei ◽  
Ruiya Li ◽  
Qin Liu ◽  
Lingling Yu

This paper proposes a new type of torsional vibration sensor based on fiber Bragg grating (FBG). The sensor has two mass ball optical fiber systems. The optical fiber is directly treated as an elastomer and a mass ball is fixed in the middle of the fiber in each mass ball fiber system, which is advantageously small, lightweight, and has anti-electromagnetic interference properties. The torsional vibration signal can be calculated by the four FBGs’ wavelength shifts, which are caused by mass balls. The difference in the two sets of mass ball optical fiber systems achieves anti-horizontal vibration and anti-temperature interference. The principle and model of the sensor, as well as numerical analysis and structural parameter design, are introduced. The experimental conclusions show that the minimum torsional natural frequency of the sensor is 27.35 Hz and the torsional vibration measurement sensitivity is 0.3603 pm/(rad/s2).


2011 ◽  
Vol 97-98 ◽  
pp. 301-304 ◽  
Author(s):  
Ke Li ◽  
Jian Guang Xie

Based on the fiber Bragg grating sensing technology, a FBG sensor is designed to monitor the dynamic response of asphalt concrete; the sensitivity coefficient of FBG sensor is 1.28pm/με. Through the static load test, the correlation between strain and wavelength variation is 0.1797µε/pm, after second packaged and embedded in SMA-13 asphalt concrete. The instantaneous impact on the road of high-speed vehicles is simulated by using drop hammer. The results are shown that the Sensor can satisfy the requirements of practical applications and succeed in monitoring the dynamic response of asphalt concrete. The monitored signal can reflect the viscoelastic-plastic deformation law of asphalt concrete. The sensor can be used to monitor the dynamic response of asphalt concrete.


2015 ◽  
Vol 64 (23) ◽  
pp. 234207
Author(s):  
Li Zheng-Ying ◽  
Sun Wen-Feng ◽  
Li Zi-Mo ◽  
Wang Hong-Hai

Sign in / Sign up

Export Citation Format

Share Document