scholarly journals Optimal Data Transmission for WSNs with Data-Location Integration

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1499
Author(s):  
Shuiyan Wu ◽  
Xiaofei Min ◽  
Jing Li

Wireless sensor networks (WSNs) have good performance for data transmission, and the data transmission of sensor nodes has the function of symmetry. However, the wireless sensor nodes are facing great pressure in data transmission due to the increasing amount and types of data that easily cause premature energy consumption of some nodes and, thus, affects data transmission. Clustering algorithm is a common method to balance energy consumption, but the existing algorithms fail to balance the network oad effectively for big data transmission. Therefore, an optimal data transmission with data-location integration (ODTD-LI) is proposed for WSNs in this paper. For optimal data transmission, we update the network topology once for one round. In the proposed algorithm, we perform calculations of the optimal cluster heads, clustering and data transmission routing through three steps. We first deploy N homogeneous and symmetry nodes in a square area randomly and calculate the optimal number of cluster heads according to the node ocations. then, the optimal number of cluster heads, energy consumption, the distances and degrees of the nodes are taken into consideration during the clustering phase. Direct communication is carried out within a cluster, and the member nodes of the cluster pass the information directly to the cluster head. Lastly, an optimal hybrid routing from each cluster node to Sink is constructed for data transmission after clustering. The simulations verify the good performance of the proposed algorithm in view of the ifetime, average delay, coverage rate (CR) and oad balance of the network compared with the existing algorithms. Through the research conducted in this paper, we find that our work has good performance for selecting the hybrid routing in the network with the nodes randomly arranged.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Amine Rais ◽  
Khalid Bouragba ◽  
Mohammed Ouzzif

Energy is the most valuable resource in wireless sensor networks; this resource is limited and much in demand during routing and communication between sensor nodes. Hierarchy structuring of the network into clusters allows reducing the energy consumption by using small distance transmissions within clusters in a multihop manner. In this article, we choose to use a hybrid routing protocol named Efficient Honeycomb Clustering Algorithm (EHCA), which is at the same time hierarchical and geographical protocol by using honeycomb clustering. This kind of clustering guarantees the balancing of the energy consumption through changing in each round the location of the cluster head, which is in a given vertex of the honeycomb cluster. The combination of geographical and hierarchical routing with the use of honeycomb clustering has proved its efficiency; the performances of our protocol outperform the existing protocols in terms of the number of nodes alive, the latency of data delivery, and the percentage of successful data delivery to the sinks. The simulations testify the superiority of our protocol against the existing geographical and hierarchical protocols.


2014 ◽  
Vol 614 ◽  
pp. 472-475 ◽  
Author(s):  
Jin Gang Cao

Due to limited energy, computing ability, and memory of Wireless sensor Networks(WSN), routing issue is one of the key factors for WSN. LEACH is the first clustering routing protocol, which can efficiently reduce the energy consumption and prolong the lifetime of WSN, but it also has some disadvantage. This paper proposed an improvement based LEACH, called LEACH-T. According to different number of clusters, LEACH-T uses variable time slot for different clusters in steady-state phase, and single-hop or multi-hop to transmit data between cluster heads and Base Station. Also it considered residual energy of sensor nodes and the optimal number of clusters during selection of the cluster heads. The simulation results show that LEACH-T has better performance than LEACH for prolonging the lifetime and reducing the energy consumption.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mingxin Yang ◽  
Jingsha He ◽  
Yuqiang Zhang

Due to limited resources in wireless sensor nodes, energy efficiency is considered as one of the primary constraints in the design of the topology of wireless sensor networks (WSNs). Since data that are collected by wireless sensor nodes exhibit the characteristics of temporal association, data fusion has also become a very important means of reducing network traffic as well as eliminating data redundancy as far as data transmission is concerned. Another reason for data fusion is that, in many applications, only some of the data that are collected can meet the requirements of the sink node. In this paper, we propose a method to calculate the number of cluster heads or data aggregators during data fusion based on the rate-distortion function. In our discussion, we will first establish an energy consumption model and then describe a method for calculating the number of cluster heads from the point of view of reducing energy consumption. We will also show through theoretical analysis and experimentation that the network topology design based on the rate-distortion function is indeed more energy-efficient.


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


2014 ◽  
Vol 666 ◽  
pp. 322-326
Author(s):  
Yu Yang Peng ◽  
Jae Ho Choi

Energy efficiency is one of the important hot issues in wireless sensor networks. In this paper, a multi-hop scheme based on a cooperative multi-input multi-outputspatial modulation technique is proposed in order to improve energy efficiency in WSN. In this scheme, the sensor nodes are grouped into clusters in order to achieve a multi-input multi-output system; and a simple forwarding transmission scenario is considered so that the intermediate clusters only forward packets originated from the source cluster down to the sink cluster. In order to verify the performance of the proposed system, the bit energy consumption formula is derived and the optimal number of hopsis determined. By qualitative experiments, the obtained results show that the proposed scheme can deliver the data over multiple hops consuming optimal energy consumption per bit.


2015 ◽  
Vol 785 ◽  
pp. 744-750
Author(s):  
Lei Gao ◽  
Qun Chen

In order to solve the energy limited problem of sensor nodes in the wireless sensor networks (WSN), a fast clustering algorithm based on energy efficiency for wire1ess sensor networks is presented in this paper. In the system initialization phase, the deployment region is divided into several clusters rapidly. The energy consumption ratio and degree of the node are chosen as the selection criterion for the cluster head. Re-election of the cluster head node at this time became a local trigger behavior. Because of the range of the re-election is within the cluster, which greatly reduces the complexity and computational load to re-elect the cluster head node. Theoretical analysis indicates that the timing complexity of the clustering algorithm is O(1), which shows that the algorithm overhead is small and has nothing to do with the network size n. Simulation results show that clustering algorithm based on energy efficiency can provide better load balancing of cluster heads and less protocol overhead. Clustering algorithm based on energy efficiency can reduce energy consumption and prolong the network lifetime compared with LEACH protocol.


2018 ◽  
Vol 19 (1) ◽  
pp. 72-90
Author(s):  
Seyed Mohammad Bagher Musavi Shirazi ◽  
Maryam Sabet ◽  
Mohammad Reza Pajoohan

Wireless sensor networks (WSNs) are a new generation of networks typically consisting of a large number of inexpensive nodes with wireless communications. The main purpose of these networks is to collect information from the environment for further processing. Nodes in the network have been equipped with limited battery lifetime, so energy saving is one of the major issues in WSNs. If we balance the load among cluster heads and prevent having an extra load on just a few nodes in the network, we can reach longer network lifetime. One solution to control energy consumption and balance the load among nodes is to use clustering techniques. In this paper, we propose a new distributed energy-efficient clustering algorithm for data aggregation in wireless sensor networks, called Distributed Clustering for Data Aggregation (DCDA). In our new approach, an optimal transmission tree is constructed among sensor nodes with a new greedy method. Base station (BS) is the root, cluster heads (CHs) and relay nodes are intermediate nodes, and other nodes (cluster member nodes) are the leaves of this transmission tree. DCDA balances load among CHs in intra-cluster and inter-cluster data communications using different cluster sizes. For efficient inter-cluster communications, some relay nodes will transfer data between CHs. Energy consumption, distance to the base station, and cluster heads’ centric metric are three main adjustment parameters for the cluster heads election. Simulation results show that the proposed protocol leads to the reduction of individual sensor nodes’ energy consumption and prolongs network lifetime, in comparison with other known methods. ABSTRAK: Rangkaian sensor wayarles (WSN) adalah rangkaian generasi baru yang terdiri daripada nod-nod murah komunikasi wayarles. Tujuan rangkaian-rangkaian ini adalah bagi mengumpul maklumat sekeliling untuk proses seterusnya. Nod dalam rangkaian ini dilengkapi bateri kurang jangka hayat, jadi simpanan tenaga adalah satu isu besar dalam WSN. Jika beban diimbang antara induk kelompok dan lebihan beban dihalang pada setiap rangkaian iaitu hanya sebilangan kecil nod pada tiap-tiap kelompok,  jangka hayat dapat dipanjangkan pada sesebuah rangkaian. Satu penyelesaian adalah dengan mengawal penggunaan tenaga dan mengimbangi beban antara nod menggunakan teknik berkelompok. Kajian ini mencadangkan kaedah baru pembahagian tenaga berkesan secara algoritma berkelompok bagi pembahagian data dalam WSN, dikenali sebagai Pembahagian Kelompok Kumpulan Data (DCDA). Melalui pendekatan baru ini, pokok transmisi optimum dibina antara nod sensor melalui kaedah baru. Stesen utama (BS) ialah akar, induk kelompok-kelompok (CHs) dan nod penyiar ialah nod perantara, dan nod-nod lain (nod-nod ahli kelompok) ialah daun bagi pokok trasmisi. DCDA mengimbangi beban CHs antara-kelompok dan dalam-kelompok komunikasi data daripada kelompok berbeza saiz. Bagi komunikasi berkesan dalam-kelompok, sebahagian nod penyampai akan memindahkan data antara CHs. Penggunaan tenaga, jarak ke stesen utama dan induk kelompok metrik sentrik adalah tiga parameter pelaras bagi pemilihan induk kelompok. Keputusan simulasi protokol yang dicadang menunjukkan pengurangan penggunaan tenaga pada nod-nod sensor individu dan memanjangkan jangka hayat rangkaian, berbanding kaedah-kaedah lain yang diketahui.


Author(s):  
Femi A. Aderohunmu ◽  
Jeremiah D. Deng ◽  
Martin Purvis

While wireless sensor networks (WSN) are increasingly equipped to handle more complex functions, in-network processing still requires the battery-powered sensors to judiciously use their constrained energy so as to prolong the elective network life time. There are a few protocols using sensor clusters to coordinate the energy consumption in a WSN, but how to deal with energy heterogeneity remains a research question. The authors propose a modified clustering algorithm with a three-tier energy setting, where energy consumption among sensor nodes is adaptive to their energy levels. A theoretical analysis shows that the proposed modifications result in an extended network stability period. Simulation has been conducted to evaluate the new clustering algorithm against some existing algorithms under different energy heterogeneity settings, and favourable results are obtained especially when the energy levels are significantly imbalanced.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1515 ◽  
Author(s):  
Alma Rodríguez ◽  
Carolina Del-Valle-Soto ◽  
Ramiro Velázquez

The usage of wireless sensor devices in many applications, such as in the Internet of Things and monitoring in dangerous geographical spaces, has increased in recent years. However, sensor nodes have limited power, and battery replacement is not viable in most cases. Thus, energy savings in Wireless Sensor Networks (WSNs) is the primary concern in the design of efficient communication protocols. Therefore, a novel energy-efficient clustering routing protocol for WSNs based on Yellow Saddle Goatfish Algorithm (YSGA) is proposed. The protocol is intended to intensify the network lifetime by reducing energy consumption. The network considers a base station and a set of cluster heads in its cluster structure. The number of cluster heads and the selection of optimal cluster heads is determined by the YSGA algorithm, while sensor nodes are assigned to its nearest cluster head. The cluster structure of the network is reconfigured by YSGA to ensure an optimal distribution of cluster heads and reduce the transmission distance. Experiments show competitive results and demonstrate that the proposed routing protocol minimizes the energy consumption, improves the lifetime, and prolongs the stability period of the network in comparison with the stated of the art clustering routing protocols.


2012 ◽  
Vol 433-440 ◽  
pp. 5228-5232
Author(s):  
Mohammad Ahmadi ◽  
Hamid Faraji ◽  
Hossien Zohrevand

A sensor network has many sensor nodes with limited energy. One of the important issues in these networks is the increase of the life time of the network. In this article, a clustering algorithm is introduced for wireless sensor networks that considering the parameters of distance and remaining energy of each node in the process of cluster head selection. The introduced algorithm is able to reduce the amount of consumed energy in the network. In this algorithm, the nodes that have more energy and less distance from the base station more probably will become cluster heads. Also, we use algorithm for finding the shortest path between cluster heads and base station. The results of simulation with the help of Matlab software show that the proposed algorithm increase the life time of the network compared with LEACH algorithm.


Sign in / Sign up

Export Citation Format

Share Document