hierarchical protocols
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Author(s):  
C. Parvathi ◽  
Suresha Talanki

The area of Wireless Sensor Networks (WSN) bring a new era of connected on-demand embedding systems which are mostly resource constrained. Despite of having design and operational challenges in real-time, WSN is currently being deployed for wide range of applications where traditional networking systems are most of time unfeasible. The prime focus of the study is to realize the significance of energy efficient routing in WSN. The core motivation is derived by addressing energy problems of WSN. An extensive analysis drawn from reviewing literatures, clearly shows that very few studies incorporated optimization towards modeling the routing schema. This chapter introduces a methodology consisting of three different types of analytical modeling where two of them focus on energy efficient clustering and another one is integrated to attain higher degree of security during data aggregation. The chapter basically provides an insight into the background of the problem which is related with the energy and security in WSN and also further provides preliminary information regarding the research overview. Further the study performs a thorough investigation on existing literatures to extract the open research problem. It basically highlights the gap which still exists and does not meet the requirements of proper energy and security demands. Literature survey on hierarchical protocols of WSN and their basic characteristics towards energy conservation is performed.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Amine Rais ◽  
Khalid Bouragba ◽  
Mohammed Ouzzif

Energy is the most valuable resource in wireless sensor networks; this resource is limited and much in demand during routing and communication between sensor nodes. Hierarchy structuring of the network into clusters allows reducing the energy consumption by using small distance transmissions within clusters in a multihop manner. In this article, we choose to use a hybrid routing protocol named Efficient Honeycomb Clustering Algorithm (EHCA), which is at the same time hierarchical and geographical protocol by using honeycomb clustering. This kind of clustering guarantees the balancing of the energy consumption through changing in each round the location of the cluster head, which is in a given vertex of the honeycomb cluster. The combination of geographical and hierarchical routing with the use of honeycomb clustering has proved its efficiency; the performances of our protocol outperform the existing protocols in terms of the number of nodes alive, the latency of data delivery, and the percentage of successful data delivery to the sinks. The simulations testify the superiority of our protocol against the existing geographical and hierarchical protocols.


Author(s):  
Yasser R. Alselehibi Yasser R. Alselehibi

The technology revolution in wireless communications and micro-electro-mechanical systems (MEMS) directly affects the development of wireless sensor networks (WSNs), which are used in several application areas, including the military, home, and environment. One of the best categories of routing networks in WSNs are hierarchical protocols (cluster-based). The wellknown protocols in this category include the Low Energy Adaptive Clustering Hierarchy (LEACH). However, the LEACH is vulnerable to many attacks. To provide cryptographic protection against outsider attacks, a modified version of LEACH, called Enhancing Secure LEACH (MS-LEACH) protocol, is used. MS-LEACH enhances security but increases power consumption. To maintain an acceptable level of security and decrease the power consumption of secure LEACH protocols, the present research proposes a Secure Lightweight LEACH (SLWLEACH) scheme. The simulation results show that this proposed SLW-LEACH protocol outperforms the MS-LEACH in terms of ne


2016 ◽  
Vol 11 (1) ◽  
pp. 38-48
Author(s):  
Johanna Sepulveda ◽  
Daniel Flórez ◽  
Vincent Immler ◽  
Guy Gogniat ◽  
Georg Sigl

Group keys can be used in order to communicate secretly sensitive data among IP cores. However, the flexibility and dynamic nature of MPSoCs force reshaping the security zones at runtime. Members of a zone must be able to efficiently compute the new group key while former members must be prevented for data disclosure. Efficiently creating security zones for achieving sensitive traffic isolation in MPSoC environments is a challenging problem. In this work we present the implementation of hierarchical group-key management for NoC-based systems in order to efficiently perform the rekeying process. We implement three hierarchical protocols and we show that by decentralizing the security management of the rekeying process, it is possible to achieve an improvement of the performance when compared to the previous flat approaches.


Sign in / Sign up

Export Citation Format

Share Document