scholarly journals End Effect Analysis of a Slot-Less Long-Stator Permanent Magnet Linear Synchronous Motor

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1939
Author(s):  
Yue Zhou ◽  
Wenjun Zong ◽  
Qiang Tan ◽  
Zhenjiang Hu ◽  
Tao Sun ◽  
...  

The implications of the end effect for flux linkage and thrust ripple in a slot-less long-stator permanent magnet linear synchronous motor (LSPMLSM), are analyzed in this paper. Since it is affected by the end effect, the air-gap magnetic field density under the end permanent magnet is different from that under the non-end permanent magnet, leading to asymmetry in the thrust ripple. For this reason, we establish a dynamic permanent magnet flux linkage model, which proves that the end effect leads to sub-harmonics in the permanent magnet flux linkage. The motor’s magnetic field distribution in the left and right parts is symmetrical. A thrust model taking into account the flux linkage sub-harmonics is established, from which the amplitude and period of the thrust ripple caused by the end effect can be calculated. There is no detent force for the slot-less LSPMLSM, and the end effect is the primary origin of the motor thrust ripple. In order to suppress the end effect, a method of increasing the end iron length is proposed, as a result of which the sub-harmonics in the flux linkage and the motor thrust ripple are effectively suppressed. Experimental and simulation results verify the results of this paper.

2013 ◽  
Vol 416-417 ◽  
pp. 27-32
Author(s):  
He Zhang ◽  
Bao Quan Kou ◽  
Shou Lun Guo ◽  
Hai Lin Zhang ◽  
Yin Xi Jin ◽  
...  

In order to minimize the detent force of permanent magnet linear synchronous motor (PMLSM) caused by end effect, a novel auxiliary poles one-piece structure is proposed. Two auxiliary poles are extended directly from two ends of the armature core. And magnetic isolation bridges are set between auxiliary pole and armature core. Compared with the conventional discrete auxiliary poles, the one-piece structure will reduce the manufacture difficulty of PMLSM with auxiliary poles and improve the reliability of linear motor.


2013 ◽  
Vol 416-417 ◽  
pp. 577-582
Author(s):  
Li Yi Li ◽  
He Zhu ◽  
Ming Na Ma ◽  
C.C. Chan

The thesis systematically researches electromagnetism and mechanical characteristic of primary segmented permanent magnet linear synchronous motor (PS-PMLSM), and discusses the varying rules of coupling flux linkage and inductance of each stator segment. The paper propose the space vector modulation direct thrust control (SVM-DTC) algorithm that based on thrust and flux observer, but also analyzes and builds adaptive slide mode observer (SMO), which adopts multi-segment estimate back-EMF combined method and phase locked loops (PLL) to estimate the position and speed of mover. Owing to the methods above, they are able to efficiently solve application problems in PS-PMLSM, which can't be settled through the conventional SVM-DTC and sensorless controlling method. Finally, the effectiveness of the algorithms is verified by simulation test.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 57341-57348 ◽  
Author(s):  
Chunyuan Liu ◽  
Huimin Gao ◽  
Yuansheng Xiong ◽  
Shigui Zhou ◽  
Wenzhen Fu

2019 ◽  
Vol 43 (4) ◽  
pp. 515-525
Author(s):  
Hongbo Qiu ◽  
Yong Zhang ◽  
Cunxiang Yang ◽  
Ran Yi

The application of an inverter is becoming more and more widespread in the surface-mounted permanent-magnet synchronous motor (SMPMSM). A large number of voltage harmonics can be generated by the inverter. The electromagnetic torque, loss, and air-gap magnetic density of the SMPMSM are affected by voltage harmonic. To analyze its influence, taking a 3 kW 1500 r/min SMPMSM as an example, a two-dimensional transient electromagnetic field model is established. The correctness of the model is verified by comparing the experimental data with the calculated data. Firstly, the finite element method is used to calculate the electromagnetic field of the SMPMSM, and the performance parameters of the SMPMSM are obtained. Based on these parameters, the influence of voltage harmonic on motor performance is analyzed quantitatively. Secondly, the influence of the voltage harmonic on the air-gap magnetic field is analyzed, and the influence degree of the time harmonic on the air-gap magnetic field is determined. At the same time, torque ripple, average torque, and loss are studied when the different harmonics orders, amplitudes, and phase angles are contained in voltage, and the variation is obtained. Finally, the variation mechanism of eddy current loss is revealed. The conclusion of this paper provides reliable theoretical guidance for improving motor performance.


Sign in / Sign up

Export Citation Format

Share Document