scholarly journals Thermonuclear Fusion Reactor Plasma-Facing Materials under Conditions of Ion Irradiation and Plasma Flux

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2081
Author(s):  
Boris I. Khripunov ◽  
Vasily S. Koidan ◽  
Evgeny V. Semenov

A review of experimental studies carried out at the NRC “Kurchatov Institute” on plasma-facing thermonuclear fusion reactor materials is presented in the paper. An experimental method was developed to produce high-level radiation damage in materials simulating the neutron effect by surrogate irradiation with high-energy ions. Plasma-surface interaction is investigated on materials irradiated to high levels of radiation damage in high-flux deuterium plasma. The total fluence of accelerated ions (3–30 MeV, 4He2+, 12C3+, 14N3+, protons) on the samples was 1021–1023 m−2. Experiments were carried out on graphite materials, tungsten, and silicon carbide. Samples have been obtained with a primary defect concentration from 0.1 to 100 displacements per atom, which covers the predicted damage for the ITER and DEMO projects. Erosion dynamics of the irradiated materials in steady-state deuterium plasma, changes of the surface microstructure, and deuterium retention were studied using SEM, TEM, ERDA, TDS, and nuclear backscattering techniques. The surface layer of the materials (3 to hundreds µm) was investigated, and it was shown that the changes in the crystal structure, the loss of their symmetry, and diffusion of defects to grain boundaries play an important role. The most significant results are presented in the paper as an overview of our previous work for many years (carbon and tungsten materials) as well as the relatively recent results (silicon carbide).

2021 ◽  
Vol 84 (7) ◽  
pp. 1252-1258
Author(s):  
B. I. Khripunov ◽  
V. S. Koidan ◽  
A. I. Ryazanov ◽  
V. M. Gureev ◽  
S. T. Latushkin ◽  
...  

Author(s):  
Y. Ito ◽  
K. Yasuda ◽  
R. Ishigami ◽  
M. Sasase ◽  
S. Hatori ◽  
...  

2018 ◽  
Vol 509 ◽  
pp. 145-151 ◽  
Author(s):  
Y. Tan ◽  
Y.Y. Lian ◽  
F. Feng ◽  
Z. Chen ◽  
J.B. Wang ◽  
...  

1987 ◽  
Vol 61 (10) ◽  
pp. 4791-4794 ◽  
Author(s):  
R. S. Bhattacharya ◽  
A. K. Rai ◽  
P. P. Pronko

1973 ◽  
Vol 28 (5) ◽  
pp. 654-656b ◽  
Author(s):  
G. H. Schwuttke ◽  
K. Brack

High energy C+ implantation is used to construct a two crystal monolithic X-ray interferometer. The X-ray interferometer technique is applied to in-situ studies of radiation damage annealing in the interferometer. Volume changes in the crystal due to the transformation of single crystal silicon to amorphous silicon and due to the formation of silicon carbide are measured.


Author(s):  
Rebecca Gray ◽  
Michael J. D. Rushton ◽  
Samuel T Murphy

Abstract The advent of High Temperature Superconductors (HTS) with high field strengths offers the possibility of building smaller, cheaper magnetically confined fusion reactors. However, bombardment by high energy neutrons ejected from the fusion reaction may damage the HTS tapes and impair their operation. Recreating the conditions present in an operational fusion reactor is experimentally challenging, therefore, this work uses molecular dynamics simulations to understand how radiation modifies the underlying crystal structure of YBa2Cu3O7. To facilitate the simulations a new potential was developed that allowed exchange of Cu ions between the two symmetrically distinct sites without modifying the structure. Radiation damage cascades predict the formation of amorphous regions surrounded by regions decorated with Cu and O defects found in the CuO-chains. The simulations suggest that the level of recombination that occurs is relatively low, resulting in a large number of remnant defects and that there is a no substantial temperature effect.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


Sign in / Sign up

Export Citation Format

Share Document