scholarly journals Deuterium retention and desorption behavior of reduced activated ferritic steel with surface damage due to high energy helium ion irradiation

2010 ◽  
Vol 85 (10-12) ◽  
pp. 1838-1840 ◽  
Author(s):  
Y. Yamauchi ◽  
K. Gotoh ◽  
Y. Nobuta ◽  
T. Hino ◽  
S. Suzuki ◽  
...  
1953 ◽  
Vol 75 (10) ◽  
pp. 2459-2464 ◽  
Author(s):  
Warren M. Garrison ◽  
Herman R. Haymond ◽  
Donald C. Morrison ◽  
Boyd M. Weeks ◽  
Jeanne Gile-Melchert

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2081
Author(s):  
Boris I. Khripunov ◽  
Vasily S. Koidan ◽  
Evgeny V. Semenov

A review of experimental studies carried out at the NRC “Kurchatov Institute” on plasma-facing thermonuclear fusion reactor materials is presented in the paper. An experimental method was developed to produce high-level radiation damage in materials simulating the neutron effect by surrogate irradiation with high-energy ions. Plasma-surface interaction is investigated on materials irradiated to high levels of radiation damage in high-flux deuterium plasma. The total fluence of accelerated ions (3–30 MeV, 4He2+, 12C3+, 14N3+, protons) on the samples was 1021–1023 m−2. Experiments were carried out on graphite materials, tungsten, and silicon carbide. Samples have been obtained with a primary defect concentration from 0.1 to 100 displacements per atom, which covers the predicted damage for the ITER and DEMO projects. Erosion dynamics of the irradiated materials in steady-state deuterium plasma, changes of the surface microstructure, and deuterium retention were studied using SEM, TEM, ERDA, TDS, and nuclear backscattering techniques. The surface layer of the materials (3 to hundreds µm) was investigated, and it was shown that the changes in the crystal structure, the loss of their symmetry, and diffusion of defects to grain boundaries play an important role. The most significant results are presented in the paper as an overview of our previous work for many years (carbon and tungsten materials) as well as the relatively recent results (silicon carbide).


1952 ◽  
Vol 74 (16) ◽  
pp. 4216-4216 ◽  
Author(s):  
Warren M. Garrison ◽  
Donald C. Morrison ◽  
Herman R. Haymond ◽  
Joseph G. Hamilton

1983 ◽  
Vol 27 ◽  
Author(s):  
P. P. Pronko ◽  
A. W. Mccormick ◽  
D. C. Ingram ◽  
A. K. Rai ◽  
J. A. Woollam ◽  
...  

ABSTRACTIrradiation with high energy heavy ion beams has been investigated as a technique for improving the quality of highly reflecting metallic surfaces to be used as laser mirrors. Properties such as reflectivity, corrosion resistance, film bonding, and threshold to laser surface damage have been examined. Modifications of composition and microstructure of the material associated with the heavy ion irradiation have been measured with RBS, TEM, SEM, Auger, and ESCA. Reflectivity and extinction coefficient measurements were made using ellipsometry techniques. Observations indicate that keV heavy ion irradiations in the fluence range of 1015 to 1016 cm−2 produce significant surface smoothing. Additionally, MeV implants of heavy ions into films of Cu, Ag, Au and Al deposited on molybdenum substrates resulted in improvements to both tarnish resistance and structural bonding integrity.


Vacuum ◽  
1985 ◽  
Vol 35 (3) ◽  
pp. 149-153 ◽  
Author(s):  
A.P. Komissarov ◽  
N.A. Machlin

1986 ◽  
Vol 95 (1) ◽  
pp. 99-103
Author(s):  
B. Panigkahi ◽  
A. K. Tyagi ◽  
R. V. Nandedkar

Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


Author(s):  
L. Hultman ◽  
C.-H. Choi ◽  
R. Kaspi ◽  
R. Ai ◽  
S.A. Barnett

III-V semiconductor films nucleate by the Stranski-Krastanov (SK) mechanism on Si substrates. Many of the extended defects present in the films are believed to result from the island formation and coalescence stage of SK growth. We have recently shown that low (-30 eV) energy, high flux (4 ions per deposited atom), Ar ion irradiation during nucleation of III-V semiconductors on Si substrates prolongs the 1ayer-by-layer stage of SK nucleation, leading to a decrease in extended defect densities. Furthermore, the epitaxial temperature was reduced by >100°C due to ion irradiation. The effect of ion bombardment on the nucleation mechanism was explained as being due to ion-induced dissociation of three-dimensional islands and ion-enhanced surface diffusion.For the case of InAs grown at 380°C on Si(100) (11% lattice mismatch), where island formation is expected after ≤ 1 monolayer (ML) during molecular beam epitaxy (MBE), in-situ reflection high-energy electron diffraction (RHEED) showed that 28 eV Ar ion irradiation prolonged the layer-by-layer stage of SK nucleation up to 10 ML. Otherion energies maintained layer-by-layer growth to lesser thicknesses. The ion-induced change in nucleation mechanism resulted in smoother surfaces and improved the crystalline perfection of thicker films as shown by transmission electron microscopy and X-ray rocking curve studies.


2003 ◽  
Vol 777 ◽  
Author(s):  
T. Devolder ◽  
M. Belmeguenai ◽  
C. Chappert ◽  
H. Bernas ◽  
Y. Suzuki

AbstractGlobal Helium ion irradiation can tune the magnetic properties of thin films, notably their magneto-crystalline anisotropy. Helium ion irradiation through nanofabricated masks can been used to produce sub-micron planar magnetic nanostructures of various types. Among these, perpendicularly magnetized dots in a matrix of weaker magnetic anisotropy are of special interest because their quasi-static magnetization reversal is nucleation-free and proceeds by a very specific domain wall injection from the magnetically “soft” matrix, which acts as a domain wall reservoir for the “hard” dot. This guarantees a remarkably weak coercivity dispersion. This new type of irradiation-fabricated magnetic device can also be designed to achieve high magnetic switching speeds, typically below 100 ps at a moderate applied field cost. The speed is obtained through the use of a very high effective magnetic field, and high resulting precession frequencies. During magnetization reversal, the effective field incorporates a significant exchange field, storing energy in the form of a domain wall surrounding a high magnetic anisotropy nanostructure's region of interest. The exchange field accelerates the reversal and lowers the cost in reversal field. Promising applications to magnetic storage are anticipated.


Sign in / Sign up

Export Citation Format

Share Document