scholarly journals Solvability Analysis of a Mixed Boundary Value Problem for Stationary Magnetohydrodynamic Equations of a Viscous Incompressible Fluid

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2088
Author(s):  
Gennadii Alekseev ◽  
Roman V. Brizitskii

We investigate the boundary value problem for steady-state magnetohydrodynamic (MHD) equations with inhomogeneous mixed boundary conditions for a velocity vector, given the tangential component of a magnetic field. The problem represents the flow of electrically conducting viscous fluid in a 3D-bounded domain, which has the boundary comprising several parts with different physical properties. The global solvability of the boundary value problem is proved, a priori estimates of the solutions are obtained, and the sufficient conditions on data, which guarantee a solution’s local uniqueness, are determined.

2020 ◽  
Vol 12 (1) ◽  
pp. 173-188
Author(s):  
Ya.O. Baranetskij ◽  
P.I. Kalenyuk ◽  
M.I. Kopach ◽  
A.V. Solomko

In this paper we continue to investigate the properties of the problem with nonlocal conditions, which are multipoint perturbations of mixed boundary conditions, started in the first part. In particular, we construct a generalized transform operator, which maps the solutions of the self-adjoint boundary-value problem with mixed boundary conditions to the solutions of the investigated multipoint problem. The system of root functions $V(L)$ of operator $L$ for multipoint problem is constructed. The conditions under which the system $V(L)$ is complete and minimal, and the conditions under which it is the Riesz basis are determined. In the case of an elliptic equation the conditions of existence and uniqueness of the solution for the problem are established.


Author(s):  
С.З. Джамалов ◽  
Р.Р. Ашуров ◽  
Х.Ш. Туракулов

В данной статье изучаются методами «ε-регуляризации» и априорных оценок с применением преобразования Фурье однозначная разрешимость и гладкость обобщенного решения одной полунелокальной краевой задачи для трехмерного уравнения Трикоми в неограниченной призматической области. In this article, the methods of «ε-regularization» and a priori estimates using the Fourier transform are studied the unique solvability and smoothness of the generalized solution of one semi-nonlocal boundary value problem for the three-dimensional Tricomi equation in an unbounded prismatic domain.


Author(s):  
John Graef ◽  
Lingju Kong ◽  
Min Wang

AbstractIn this paper, the authors consider a nonlinear fractional boundary value problem defined on a star graph. By using a transformation, an equivalent system of fractional boundary value problems with mixed boundary conditions is obtained. Then the existence and uniqueness of solutions are investigated by fixed point theory.


2005 ◽  
Vol 46 (4) ◽  
pp. 449-470 ◽  
Author(s):  
Marian Slodička

AbstractWe consider a nonlinear second-order elliptic boundary value problem in a bounded domain Ω ⊂ RN with mixed boundary conditions. The solution is found via linearisation. We design a robust and efficient approximation scheme. Error estimates for the linearisation algorithm are derived in L2(Ω), H1(Ω) and L∞(Ω) spaces under the minimal regularity assumptions of the exact solution.


2009 ◽  
Vol 2009 ◽  
pp. 1-13
Author(s):  
A. L. Marhoune ◽  
F. Lakhal

We study a boundary value problem with multivariables integral type condition for a class of parabolic equations. We prove the existence, uniqueness, and continuous dependence of the solution upon the data in the functional wieghted Sobolev spaces. Results are obtained by using a functional analysis method based on two-sided a priori estimates and on the density of the range of the linear operator generated by the considered problem.


2004 ◽  
Vol 4 (2) ◽  
pp. 228-261 ◽  
Author(s):  
Stanly Steinberg

AbstractWe develop a discrete analog of the differential calculus and use this to develop arbitrarily high-order approximations to Sturm–Liouville boundary-value problems with general mixed boundary conditions. An important feature of the method is that we obtain a discrete exact analog of the energy inequality for the continuum boundary-value problem. As a consequence, the discrete and continuum problems have exactly the same solvability conditions. We call such discretizations mimetic. Numerical test confirm the accuracy of the discretization. We prove the solvability and convergence for the discrete boundary-value problem modulo the invertibility of a matrix that appears in the discretization being positive definite. Numerical experiments indicate that the spectrum of this matrix is real, greater than one, and bounded above by a number smaller than three.


Sign in / Sign up

Export Citation Format

Share Document