A Discreate Calculus with Applications of High-Order Discretizations to Boundary-Value Problems

2004 ◽  
Vol 4 (2) ◽  
pp. 228-261 ◽  
Author(s):  
Stanly Steinberg

AbstractWe develop a discrete analog of the differential calculus and use this to develop arbitrarily high-order approximations to Sturm–Liouville boundary-value problems with general mixed boundary conditions. An important feature of the method is that we obtain a discrete exact analog of the energy inequality for the continuum boundary-value problem. As a consequence, the discrete and continuum problems have exactly the same solvability conditions. We call such discretizations mimetic. Numerical test confirm the accuracy of the discretization. We prove the solvability and convergence for the discrete boundary-value problem modulo the invertibility of a matrix that appears in the discretization being positive definite. Numerical experiments indicate that the spectrum of this matrix is real, greater than one, and bounded above by a number smaller than three.

Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 910
Author(s):  
Bhuvaneswari Sambandham ◽  
Aghalaya S. Vatsala ◽  
Vinodh K. Chellamuthu

The generalized monotone iterative technique for sequential 2 q order Caputo fractional boundary value problems, which is sequential of order q, with mixed boundary conditions have been developed in our earlier paper. We used Green’s function representation form to obtain the linear iterates as well as the existence of the solution of the nonlinear problem. In this work, the numerical simulations for a linear nonhomogeneous sequential Caputo fractional boundary value problem for a few specific nonhomogeneous terms with mixed boundary conditions have been developed. This in turn will be used as a tool to develop the accurate numerical code for the linear nonhomogeneous sequential Caputo fractional boundary value problem for any nonhomogeneous terms with mixed boundary conditions. This numerical result will be essential to solving a nonlinear sequential boundary value problem, which arises from applications of the generalized monotone method.


Filomat ◽  
2020 ◽  
Vol 34 (7) ◽  
pp. 2273-2281
Author(s):  
Şuayip Toprakseven

In this paper, we obtain Hartman-Wintner and Lyapunov-type inequalities for the three-point fractional boundary value problem of the fractional Liouville-Caputo differential equation of order ? 2 (2; 3]. The results presented in this work are sharper than the existing results in the literature. As an application of the results, the fractional Sturm-Liouville eigenvalue problems have also been presented. Moreover, we examine the nonexistence of the nontrivial solution of the fractional boundary value problem.


2020 ◽  
Vol 12 (1) ◽  
pp. 173-188
Author(s):  
Ya.O. Baranetskij ◽  
P.I. Kalenyuk ◽  
M.I. Kopach ◽  
A.V. Solomko

In this paper we continue to investigate the properties of the problem with nonlocal conditions, which are multipoint perturbations of mixed boundary conditions, started in the first part. In particular, we construct a generalized transform operator, which maps the solutions of the self-adjoint boundary-value problem with mixed boundary conditions to the solutions of the investigated multipoint problem. The system of root functions $V(L)$ of operator $L$ for multipoint problem is constructed. The conditions under which the system $V(L)$ is complete and minimal, and the conditions under which it is the Riesz basis are determined. In the case of an elliptic equation the conditions of existence and uniqueness of the solution for the problem are established.


2009 ◽  
Vol 7 (4) ◽  
Author(s):  
Ravi Agarwal ◽  
Donal O’Regan ◽  
Svatoslav Staněk

AbstractThe paper is concerned with existence results for positive solutions and maximal positive solutions of singular mixed boundary value problems. Nonlinearities h(t;x;y) in differential equations admit a time singularity at t=0 and/or at t=T and a strong singularity at x=0.


2016 ◽  
Vol 25 (2) ◽  
pp. 215-222
Author(s):  
K. R. PRASAD ◽  
◽  
N. SREEDHAR ◽  
L. T. WESEN ◽  
◽  
...  

In this paper, we develop criteria for the existence of multiple positive solutions for second order Sturm-Liouville boundary value problem, u 00 + k 2u + f(t, u) = 0, 0 ≤ t ≤ 1, au(0) − bu0 (0) = 0 and cu(1) + du0 (1) = 0, where k ∈ 0, π 2 is a constant, by an application of Avery–Henderson fixed point theorem.


Sign in / Sign up

Export Citation Format

Share Document