scholarly journals Compound Fault Diagnosis of Rolling Bearing Based on ACMD, Gini Index Fusion and AO-LSTM

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2386
Author(s):  
Jie Ma ◽  
Xinyu Wang

Due to the symmetry of the rolling bearing structure and the rotating operation mode, it will cause the coupling modulation phenomenon when it is damaged in multiple places at the same time, which makes it difficult to accurately identify all kinds of faults. For such problems, a compound fault diagnosis method based on adaptive chirp mode decomposition (ACMD), Gini index fusion and long short-term memory (LSTM) neural network optimized by Aquila Optimizer (AO) is proposed. Firstly, a series of IMF components are obtained by decomposing the vibration signal by means of ACMD, and the required components are selected by using the correlation coefficient method. Then, the Gini index of the square envelope (GISE) and the Gini index of the square envelope spectrum (GISES) of each component are calculated, respectively, and they are fused to construct a highly dimensional feature matrix. Then, with the aim of solving the problem of difficult selection of LSTM hyperparameters, the AO-LSTM model is constructed. Finally, the feature matrix is divided into a training set and a test set. The training set is input into the model for training, and then the training network is used to predict the test set, and outputs diagnostic results. The simulation and experimental results show that the proposed method can achieve higher accuracy and stronger robustness, compared with the existing intelligent diagnosis methods for bearing compound faults.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chuan Xiang ◽  
Zejun Ren ◽  
Pengfei Shi ◽  
Hongge Zhao

The rolling bearing is an extremely important basic mechanical device. The diagnosis of its fault play an important role in the safe and stable operation of the mechanical system. This study proposed an approach, based on the Fast Fourier Transform (FFT) with Decimation-In-Time (DIT) and XGBoost algorithm, to identify the fault type of bearing quickly and accurately. Firstly, the original vibration signal of rolling bearing was transformed by DIT-FFT and divided into the training set and test set. Next, the training set was used to train the fault diagnosis XGBoost model, and the test set was used to validate the well-trained XGBoost model. Finally, the proposed approach was compared with some common methods. It is demonstrated that the proposed approach is able to diagnose and identify the fault type of bearing quickly with almost 99% accuracy. It is more accurate than Machine Learning (89.88%), Ensemble Learning (93.25%), and Deep Learning (95%). This approach is suitable for the fault diagnosis of rolling bearing.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 995 ◽  
Author(s):  
Tao Liang ◽  
Hao Lu

Aiming at the problem that it is difficult to extract fault features from the nonlinear and non-stationary vibration signals of wind turbine rolling bearings, which leads to the low diagnosis and recognition rate, a feature extraction method based on multi-island genetic algorithm (MIGA) improved variational mode decomposition (VMD) and multi-features is proposed. The decomposition effect of the VMD method is limited by the number of decompositions and the selection of penalty factors. This paper uses MIGA to optimize the parameters. The improved VMD method is used to decompose the vibration signal into a number of intrinsic mode functions (IMF), and a group of components containing the most information is selected through the Holder coefficient. For these components, multi-features based on Renyi entropy feature, singular value feature, and Hjorth parameter feature are extracted as the final feature vector, which is input to the classifier to realize the fault diagnosis of rolling bearing. The experimental results prove that the proposed method can more effectively extract the fault characteristics of rolling bearings. The fault diagnosis model based on this method can accurately identify bearing signals of 16 different fault types, severity, and damage points.


Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 739
Author(s):  
Chunguang Zhang ◽  
Yao Wang ◽  
Wu Deng

It is difficult to extract the fault signal features of locomotive rolling bearings and the accuracy of fault diagnosis is low. In this paper, a novel fault diagnosis method based on the optimized variational mode decomposition (VMD) and resonance demodulation technology, namely GNVRFD, is proposed to realize the fault diagnosis of locomotive rolling bearings. In the proposed GNVRFD method, the genetic algorithm and nonlinear programming are combined to design a novel parameter optimization algorithm to adaptively optimize the two parameters of the VMD. Then the optimized VMD is employed to decompose the collected vibration signal into a series of intrinsic mode functions (IMFs), and the kurtosis value of each IMF is calculated, respectively. According to the principle of maximum value, two most sensitive IMF components are selected to reconstruct the vibration signal. The resonance demodulation technology is used to decompose the reconstructed vibration signal in order to obtain the envelope spectrum, and the fault frequency of locomotive rolling bearings is effectively obtained. Finally, the actual data of rolling bearings is selected to testify the effectiveness of the proposed GNVRFD method. The experiment results demonstrate that the proposed GNVRFD method can more accurately and effectively diagnose the fault of locomotive rolling bearings by comparing with other fault diagnosis methods.


2016 ◽  
Vol 39 (7) ◽  
pp. 1000-1006 ◽  
Author(s):  
Xueli An ◽  
Yongjun Tang

For the unsteady characteristics of a fault vibration signal of a wind turbine’s rolling bearing, a bearing fault diagnosis method based on variational mode decomposition of the energy distribution is proposed. Firstly, variational mode decomposition is used to decompose the original vibration signal into a finite number of stationary components. Then, some components which comprise the major fault information are selected for further analysis. When a rolling bearing fault occurs, the energy in different frequency bands of the vibration acceleration signals will change. Energy characteristic parameters can then be extracted from each component as the input parameters of the classifier, based on the K nearest neighbour algorithm. This can identify the type of fault in the rolling bearing. The vibration signals from a spherical roller bearing in its normal state, with an outer race fault, with an inner race fault and with a roller fault were analyzed. The results showed that the proposed method (variational mode decomposition is used as a pre-processor to extract the energy of each frequency band as the characteristic parameter) can identify the working state and fault type of rolling bearings in a wind turbine.


2013 ◽  
Vol 274 ◽  
pp. 37-40
Author(s):  
Jing Zhong Xiang ◽  
Fu Peng Ge ◽  
Han Sun ◽  
Xian Jiang Shi

It is first to make Empirical Mode Decomposition (EMD) and achieve Hilbert-Hung transform (HHT) of envelope spectrum after Hilbert transformation, which can resolve the cross fault existing in Hilbert transformation is utilized merely. However, it can’t improve the resolution of envelope spectrum, which doesn’t adapt the characteristic of high resonant frequency of rolling bearing and low fault frequency. The paper utilizing the principle of real modulation shift frequency moves the EMD decomposition components of high frequency section to low frequency section and makes analysis of envelope spectrum after Hilbert transformation, which resolves the problem of low frequency resolution of pure HHT.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Qiang-qiang Chen ◽  
Shao-wu Dai ◽  
Hong-de Dai

The vibration signals resulting from rolling bearings are nonlinear and nonstationary, and an approach for the fault diagnosis of rolling bearings using the quantile permutation entropy and EMD (empirical mode decomposition) is proposed. Firstly, the EMD is used to decompose the rolling bearings vibration signal, and several IMFs (intrinsic mode functions) spanning different scales are obtained. Secondly, aiming at the shortcomings of the permutation entropy algorithm, a new permutation entropy algorithm based on sample quantile is proposed, and the quantile permutation entropy of the first few IMFs, which contain the main fault information, is calculated. The quantile permutation entropies are accordingly seen as the characteristic vector and then input to the particle swarm optimization and support vector machine. Finally, the proposed method is applied to the experimental data. The analysis results show that the proposed approach can effectively achieve fault diagnosis of rolling bearings.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Tengfei Guan ◽  
Shijun Liu ◽  
Wenbo Xu ◽  
Zhisheng Li ◽  
Hongtao Huang ◽  
...  

The fault vibration signal of a bearing has nonstationary and nonlinear characteristics and can be regarded as the combination of multiple amplitude- and frequency-modulation components. The envelope of a single component contains the fault characteristics of a bearing. Local characteristic-scale decomposition (LCD) can decompose the vibration signal into a series of multiple intrinsic scale components. Some components can clearly reflect the running state of a bearing, and fault diagnosis is conducted according to the envelope spectrum. However, the conventional LCD takes a single-channel signal as the research object, which cannot fully reflect the characteristic information of the rotor, and the analysis results based on different channel signals of the same section will be inconsistent. To solve this problem, based on full vector spectrum technology, the homologous dual-channel information is fused. A vector LCD method based on cross-correlation coefficient component selection is given, and a simulation analysis is completed. The effectiveness of the proposed method is verified by simulated signals and experimental signals of a bearing, which provides a method for bearing feature extraction and fault diagnosis.


2013 ◽  
Vol 765-767 ◽  
pp. 2065-2069 ◽  
Author(s):  
Zhong Liang Lv ◽  
Pei Wen An ◽  
Bao Ping Tang ◽  
Li Hui Zhang

The EEDM(Ensemle Empirical Mode Decomposition) combined with correlation coefficient was proposed for identify the fault of rolling bearing. First, the fault of rolling bearing vibration signal will be decomposed into several IMF components, in view of the illusive component may appear in EEDM components, respectively calculate each IMF components and the correlation between the original signal, then carry out spectrum analysis to each IMF components and pick up fault feature. Through the experimental failure data analysis of rolling bearing inner ring, the EEMD method is good for fault identification of rolling bearing.


2014 ◽  
Vol 680 ◽  
pp. 198-205 ◽  
Author(s):  
Xiao Lin Wang ◽  
Wei Hua Han ◽  
Han Gu ◽  
Cun Hu ◽  
Xing Xing Han

In order to extract the faint fault information from complicated vibration signal of bearing, the correlated kurtosis is introduced into the field of rolling bearing fault diagnosis. Combined with ensemble empirical mode decomposition (EEMD) and correlated kurtosis, a feature extraction method is proposed. According to the method, by EEMD processing a group of intrinsic mode functions (IMFs) are obtained, then the IMF with maximal correlated kurtosis is selected, and the weak fault signal is clearly extracted. The effectiveness of the method is demonstrated on both simulated signal and actual data.


2013 ◽  
Vol 278-280 ◽  
pp. 1027-1031 ◽  
Author(s):  
Xian You Zhong ◽  
Chun Hua Zhao ◽  
Hai Jiang Dong ◽  
Xian Ming Liu ◽  
Liang Cai Zeng

An approach of fault diagnosis of bearing based on empirical mode decomposition (EMD), sample entropy and 1.5 dimension spectrum was presented. Firstly, the original vibration signal was decomposed into a number of intrinsic mode functions (IMFs) using EMD. Second, the sample entropies of IMFs were calculated to select the sensitive IMF. Finally, the IMF containing fault infor- mation was analyzed with 1.5 dimension spectrum, The experimental results show the method can be used to effectively diagnose faults of rolling bearing.


Sign in / Sign up

Export Citation Format

Share Document