scholarly journals Device-Free Indoor Location Estimation System Using Commodity Wireless LANs

Telecom ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 181-198
Author(s):  
Yuan Zhou ◽  
Minseok Kim ◽  
Hideaki Momose ◽  
Satoru Yasukawa

In recent years, propagation channel characteristics have been effectively used in several applications such as motion sensing and position detection. Considerable attention has been paid to channel-sounding methods that are easy to utilize using low-cost devices. This paper presents a device-free indoor location estimation method using the spatio-temporal features of radio propagation channels using a 2.4 GHz-band three-by-three multiple-input-multiple-output (MIMO) channel sounder developed using commodity wireless local area network (WLAN). The measurement results demonstrated a reasonable performance of the proposed method with a small number of antennas.

Author(s):  
Yuan Zhou ◽  
Minseok Kim ◽  
Hideaki Momose ◽  
Satoru Yasukawa

In recent years, since the propagation channel characteristics have been effectively used for applications such as motion sensing, position detection, etc. A great deal of attention is attracted to channel sounding methods easy to utilize using low-cost devices. This paper presents a device-free indoor location estimation method using spatio-temporal features of radio propagation channels using the 2.4-GHz band 3-by-3 MIMO channel sounder developed using commodity wireless LANs. The measurement results demonstrated a reasonable performance of the proposed method with small number of antennas.


2013 ◽  
Vol 380-384 ◽  
pp. 2499-2505 ◽  
Author(s):  
Ping Chen ◽  
Yu Bin Xu ◽  
Liang Chen ◽  
Zhi An Deng

The increasing demand for indoor location based services has motivated the development of various indoor positioning methods. Among them, fingerprinting based positioning system in wireless local area network (WLAN) has been paid more attentions due to its cost effectiveness and relatively high accuracy. This paper investigates various optimization techniques for WLAN fingerprinting positioning comprehensively. The fingerprinting positioning comprises five major steps: Radio Map construction, location clustering, feature extraction, location estimation and tracking. The optimization techniques in these five steps are discussed and finally the future trends are presented.


2013 ◽  
Vol 712-715 ◽  
pp. 1741-1745
Author(s):  
Hao Cai ◽  
Dan Ao Han

Based on the special correlation of antennas and the power delay profile (PDP) of the cluster model, six models of A-F have been established by the TGn task-group in total. On the basis of the new broadband wireless local area network (WLAN) standard--IEEE 802.11ac with larger bandwidth and multi-user requirements drawn up by the TGac task-group, in this paper, the IEEE 802.11ac channel model is set up by means of improving and simulating the indoor MIMO channel.


Author(s):  
Guohua Hu ◽  
Pascal Feldhaus ◽  
Yuwu Feng ◽  
Shengjie Wang ◽  
Juan Zheng ◽  
...  

Collecting data like location information is an essential part of concepts like the “IoT” or “Industry 4.0”. In the case of the development of a precise localization system and an integrated navigation system, indoor location technology receives more and more attention and has become a hot research topic. Common indoor location techniques are mainly based on wireless local area network, radio frequency tag, ZigBee technology, Bluetooth technology, infrared technology and ultra-wideband (UWB). However, these techniques are vulnerable to various noise signals and indoor environments, and also the positioning accuracy is easily affected by the complicated indoor environment. We studied the problem of real-time location tracking based on UWB in an indoor environment in this paper. We have proposed a combinational filtering algorithm and an improved Two-Way Ranging (ITWR) method for indoor real-time location tracking. The simulation results prove that the real-time performance and high accuracy of the presented algorithm can improve location accuracy. The experiment shows that the combinational algorithm and ITWR method which are applied to the positioning and navigation of the smart supermarket, have achieved quiet good results in positioning accuracy. The average positioning error is less than 10[Formula: see text]cm, some of the improvements can elevate the positioning accuracy by 17.5%. UWB is a suitable method for indoor real-time location tracking and has important theoretic value and practical significance.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Milenko Brković ◽  
Mirjana Simić

Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware.


Author(s):  
Chaithra. H. U ◽  
Vani H.R

Now a days in Wireless Local Area Networks (WLANs) used in different fields because its well-suited simulator and higher flexibility. The concept of WLAN  with  advanced 5th Generation technologies, related to a Internet-of-Thing (IOT). In this project, representing the Network Simulator (NS-2) used linked-level simulators for Wireless Local Area Networks and still utilized IEEE 802.11g/n/ac with advanced IEEE 802.11ah/af technology. Realization of the whole Wireless Local Area Networking linked-level simulators inspired by the recognized Vienna Long Term Evolution- simulators. As a outcome, this is achieved to link together that simulator to detailed performances of Wireless Local Area Networking with Long Term Evolution, operated in the similar RF bands. From the advanced 5th Generation support cellular networking, such explore is main because different coexistences scenario can arise linking wireless communicating system to the ISM and UHF bands.


Sign in / Sign up

Export Citation Format

Share Document