scholarly journals Relationship between Fusarium Head Blight, Kernel Damage, Concentration of Fusarium Biomass, and Fusarium Toxins in Grain of Winter Wheat Inoculated with Fusarium culmorum

Toxins ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 2 ◽  
Author(s):  
Tomasz Góral ◽  
Halina Wiśniewska ◽  
Piotr Ochodzki ◽  
Linda Nielsen ◽  
Dorota Walentyn-Góral ◽  
...  

Winter wheat lines were evaluated for their reaction to Fusarium head blight (FHB) after inoculation with Fusarium culmorum in two field experiments. A mixture of two F. culmorum chemotypes was applied (3ADON—deoxynivalenol producing, NIV—nivalenol producing). Different types of resistance were evaluated, including head infection, kernel damage, Fusarium biomass content and trichothecenes B (deoxynivalenol (DON), and nivalenol (NIV)) accumulation in grain. The aim of the study was to find relationships between different types of resistance. Head infection (FHB index) and Fusarium damaged kernels (FDK) were visually scored. Fusarium biomass was analysed using real-time PCR. Trichothecenes B accumulation was analysed using gas chromatography. Wheat lines differ in their reaction to inoculation for all parameters describing FHB resistance. We found a wide variability of FHB indexes, FDK, and Fusarium biomass content. Both toxins were present. DON content was about 60% higher than NIV and variability of this proportion between lines was observed. Significant correlation was found between head infection symptoms and FDK. Head infection was correlated with F. culmorum biomass and NIV concentration in grain. No correlation was found between the FHB index and DON concentration. Similarly, FDK was not correlated with DON content, but it was with NIV content; however, the coefficients were higher than for the FHB index. Fusarium biomass amount was positively correlated with both toxins as well as with the FHB index and FDK. Environmental conditions significantly influenced the DON/NIV ratio in grain. In locations where less F. culmorum biomass was detected, the DON amount was higher than NIV, while in locations where more F. culmorum biomass was observed, NIV prevailed over DON.

Author(s):  
Evgeniy Dimitrov ◽  
◽  
Zlatina Peycheva Uhr ◽  
Blagoy Andonov ◽  
Nikolaya Velcheva ◽  
...  

2008 ◽  
Vol 43 (No. 1) ◽  
pp. 16-31 ◽  
Author(s):  
V. Šíp ◽  
J. Chrpová ◽  
L. Leišová ◽  
S. Sýkorová ◽  
L. Kučera ◽  
...  

Reactions to artificial infection with <i>Fusarium culmorum</i> and (metconazole- or tebuconazole-based) fungicides were studied in nine winter wheat cultivars that were evaluated in field experiments at the location Prague-Ruzyne for four years (2001&minus;2004) for deoxynivalenol (DON) content in grain, pathogen DNA content (Ct) by real-time quantitative PCR, percentage of Fusarium damaged grains (FDG), symptom scores and reductions in grain yield components. All examined traits were highly affected by conditions of experimental years and interactions with cultivars and treatments. Moderately resistant cultivars Arina and Petrus were included in the first homogeneous group in all traits, including the pathogen DNA content. To predict cultivar resistance to Fusarium head blight and accumulation of DON, the examination of the percentage of FDG in different environments appeared to be useful from practical aspects. The pathogen DNA content was significantly related to the content of DON under different conditions, however, the correlation coefficients ranged between 0.42 and 0.92. Different levels of DON could be detected at similar pathogen contents. The higher colonization of grain by the fungus was mostly connected with a strongly reduced amount of DON per pathogen unit (DON/Ct ratio). The fungicide treatment had a significant effect on a reduction in all traits except DON/Ct, but the effects on different traits were not often proportional and they were highly variable in the particular years (range 10&minus;69%) and cultivars (range < 0&minus;60%). While the application of fungicide caused a reduction in DON content in all cultivars, an increase in pathogen content after the application of fungicides was not exceptional. The low fungicide effect on a reduction in pathogen content was connected with higher temperatures (temperature extremes) in a 30-day period of disease development. The efficacy of fungicide treatment for DON was low at high pathogen content and late heading. The use of the collected data to improve control measures is discussed.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1690
Author(s):  
Piotr Ochodzki ◽  
Adriana Twardawska ◽  
Halina Wiśniewska ◽  
Tomasz Góral

Fusarium head blight (FHB) can contaminate cereal grains with mycotoxins. Winter wheat can also become infected with FHB and is more resistant than durum wheat to head infection but less than other small-grain cereals. The aim of this study was to identify winter wheat lines that combine low levels of head infection and kernel damage with low levels of grain contamination with mycotoxins. Resistance of 27 winter wheat lines (four with resistance gene Fhb1) and cultivars to FHB was evaluated over a three-year (2017–2019) experiment established in two locations (Poznań and Radzików, Poland). At the anthesis stage, heads were inoculated with Fusarium culmorum isolates. The FHB index was scored, and the percentage of Fusarium-damaged kernels (FDKs) was assessed. The grain was analyzed for type B trichothecenes (deoxynivalenol and derivatives and nivalenol) and zearalenone content. The average FHB index of both locations was 12.9%. The proportion of FDK was 6.9% in weight and 8.5% in number. The average content of deoxynivalenol amounted to 3.543 mg/kg, and the average amount of nivalenol was 2.115 mg/kg. In total, we recorded 5.804 m/kg of type B trichothecenes. The zearalenone content in the grain was 0.214 mg/kg. Relationships between the FHB index, FDK, and mycotoxin contents were highly significant for wheat lines; however, these relationships were stronger for FDK than for FHB index. Breeding lines combining all types of FHB resistance were observed, five of which had resistance levels similar to those of wheat lines with the Fhb1 gene.


Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 554-560 ◽  
Author(s):  
Stephen N. Wegulo ◽  
William W. Bockus ◽  
John Hernandez Nopsa ◽  
Erick D. De Wolf ◽  
Kent M. Eskridge ◽  
...  

Fusarium head blight (FHB) or scab, incited by Fusarium graminearum, can cause significant economic losses in small grain production. Five field experiments were conducted from 2007 to 2009 to determine the effects on FHB and the associated mycotoxin deoxynivalenol (DON) of integrating winter wheat cultivar resistance and fungicide application. Other variables measured were yield and the percentage of Fusarium-damaged kernels (FDK). The fungicides prothioconazole + tebuconazole (formulated as Prosaro 421 SC) were applied at the rate of 0.475 liters/ha, or not applied, to three cultivars (experiments 1 to 3) or six cultivars (experiments 4 and 5) differing in their levels of resistance to FHB and DON accumulation. The effect of cultivar on FHB index was highly significant (P < 0.0001) in all five experiments. Under the highest FHB intensity and no fungicide application, the moderately resistant cultivars Harry, Heyne, Roane, and Truman had less severe FHB than the susceptible cultivars 2137, Jagalene, Overley, and Tomahawk (indices of 30 to 46% and 78 to 99%, respectively). Percent fungicide efficacy in reducing index and DON was greater in moderately resistant than in susceptible cultivars. Yield was negatively correlated with index, with FDK, and with DON, whereas index was positively correlated with FDK and with DON, and FDK and DON were positively correlated. Correlation between index and DON, index and FDK, and FDK and DON was stronger in susceptible than in moderately resistant cultivars, whereas the negative correlation between yield and FDK and yield and DON was stronger in moderately resistant than in susceptible cultivars. Overall, the strongest correlation was between index and DON (0.74 ≤ R ≤ 0.88, P ≤ 0.05). The results from this study indicate that fungicide efficacy in reducing FHB and DON was greater in moderately resistant cultivars than in susceptible ones. This shows that integrating cultivar resistance with fungicide application can be an effective strategy for management of FHB and DON in winter wheat.


2021 ◽  
Author(s):  
Yunzhe Zhao ◽  
Xinying Zhao ◽  
Mengqi Ji ◽  
Wenqi Fang ◽  
Hong Guo ◽  
...  

Abstract Background: Fusarium head blight (FHB) is a disease affecting wheat spikes caused by Fusarium species, which leads to cases of severe yield reduction and seed contamination. Therefore, identifying resistance genes from various sources is always of importance to wheat breeders. In this study, a genome-wide association study (GWAS) focusing on FHB using a high-density genetic map constructed with 90K single nucleotide polymorphism (SNP) arrays in a panel of 205 elite winter wheat accessions, was conducted in 3 environments. Results: Sixty-six significant marker–trait associations (MTAs) were identified (P<0.001) on fifteen chromosomes explaining 5.4–11.2% of the phenotypic variation therein. Some important new genomic regions involving FHB resistance were found on chromosomes 2A, 3B, 5B, 6A, and 7B. On chromosome 7B, 6 MTAs at 92 genetic positions were found in 2 environments. Moreover, there were 11 MTAs consistently associated with diseased spikelet rate and diseased rachis rate as pleiotropic effect loci. Eight new candidate genes of FHB resistance were predicated in wheat. Of which, three genes: TraesCS5D01G006700, TraesCS6A02G013600, and TraesCS7B02G370700 on chromosome 5DS, 6AS, and 7BL, respectively, were important in defending against FHB by regulating chitinase activity, calcium ion binding, intramolecular transferase activity, and UDP-glycosyltransferase activity in wheat. In addition, a total of six excellent alleles associated with wheat scab resistance were discovered. Conclusion: These results provide important genes/loci for enhancing FHB resistance in wheat breeding populations by marker-assisted selection.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1387-1397 ◽  
Author(s):  
D. L. D'Angelo ◽  
C. A. Bradley ◽  
K. A. Ames ◽  
K. T. Willyerd ◽  
L. V. Madden ◽  
...  

Seven field experiments were conducted in Ohio and Illinois between 2011 and 2013 to evaluate postanthesis applications of prothioconazole + tebuconazole and metconazole for Fusarium head blight and deoxynivalenol (DON) control in soft red winter wheat. Treatments consisted of an untreated check and fungicide applications made at early anthesis (A), 2 (A+2), 4 (A+4), 5 (A+5), or 6 (A+6) days after anthesis. Six of the seven experiments were augmented with artificial Fusarium graminearum inoculum, and the other was naturally infected. FHB index (IND), Fusarium damaged kernels (FDK), and DON concentration of grain were quantified. All application timings led to significantly lower mean arcsine-square-root-transformed IND and FDK (arcIND and arcFDK) and log-transformed (logDON) than in the untreated check; however, arcIND, arcFDK, and logDON for the postanthesis applications were generally not significantly different from those for the anthesis applications. Relative to the check, A+2 resulted in the highest percent control for both IND and DON, 69 and 54%, respectively, followed by A+4 (62 and 52%), A+6 (62 and 48%), and A (56 and 50%). A+2 and A+6 significantly reduced IND by 30 and 14%, respectively, relative to the anthesis application. Postanthesis applications did not, however, reduce DON relative to the anthesis application. These results suggest that applications made up to 6 days following anthesis may be just as effective as, and sometimes more effective than, anthesis applications at reducing FHB and DON.


2005 ◽  
Vol 18 (12) ◽  
pp. 1318-1324 ◽  
Author(s):  
Marc Lemmens ◽  
Uwe Scholz ◽  
Franz Berthiller ◽  
Chiara Dall'Asta ◽  
Andrea Koutnik ◽  
...  

We investigated the hypothesis that resistance to deoxynivalenol (DON) is a major resistance factor in the Fusarium head blight (FHB) resistance complex of wheat. Ninety-six double haploid lines from a cross between ‘CM-82036’ and ‘Remus’ were examined. The lines were tested for DON resistance after application of the toxin in the ear, and for resistances to initial infection and spread of FHB after artificial inoculation with Fusarium spp. Toxin application to flowering ears induced typical FHB symptoms. Quantitative trait locus (QTL) analyses detected one locus with a major effect on DON resistance (logarithm of odds = 53.1, R2 = 92.6). The DON resistance phenotype was closely associated with an important FHB resistance QTL, Qfhs.ndsu-3BS, which previously was identified as governing resistance to spread of symptoms in the ear. Resistance to the toxin was correlated with resistance to spread of FHB (r = 0.74, P < 0.001). In resistant wheat lines, the applied toxin was converted to DON-3-O-glucoside as the detoxification product. There was a close relation between the DON-3-glucoside/DON ratio and DON resistance in the toxintreated ears (R2 = 0.84). We conclude that resistance to DON is important in the FHB resistance complex and hypothesize that Qfhs.ndsu-3BS either encodes a DON-glucosyltransferase or regulates the expression of such an enzyme.


2018 ◽  
Vol 11 (4) ◽  
pp. 539-557 ◽  
Author(s):  
Á. Mesterházy ◽  
M. Varga ◽  
A. György ◽  
S. Lehoczki-Krsjak ◽  
B. Tóth

Since resistance is the most important agent in regulating deoxynivalenol (DON), breeding for higher resistance is the key to improve food safety. Fusarium damaged kernels (FDK) show a closer correlation with DON than visual symptoms. This implies a difference in genetic regulation. For this reason, the mapping should be extended not only for the visual symptoms, but also for FDK and DON. Quantitative trait loci influencing only Fusarium head blight (FHB) symptoms, may not be relevant for FDK and DON. Type I and II were pooled to overall resistance at spray inoculation. From 2010 to 2016 three selection platforms were compared by checking running variety breeding programs. The use of exotic sources in breeding significantly increased the number of more resistant genotypes in each selection phase from F3-F8 generations compared to the control program where crosses were not planned for FHB resistance and screening in early generations was also not performed. However, also in this breeding platform – at a lower rate – moderately or highly resistant genotypes could be selected. Of them, eight cultivars were/are in commercial production. The Fusarium breeding program using only adapted and more resistant parents generally gave closer results to exotic breeds, and several highly resistant genotypes were produced as a result. For winter wheat the phenotypic screening at high disease pressure is the key to select highly resistant materials. At low infection pressure the high and medium resistant genotypes come in the same group. The use of more isolates increases the chance to have strong selection pressure each year. FHB resistance was combined with leaf rust, yellow rust, powdery mildew, leaf spot resistance and high protein content (15-18%). The cultivar registration and post registration screening is the key in improving food safety in commercial production.


2012 ◽  
Author(s):  
◽  
Md Sariful Islam

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Fusarium head blight (FHB) mainly caused by Fusarium graminearum Schwabe [telomorph: Gibberella zeae Schw. (Petch)] causes devastating losses in wheat globally. Host-plant resistance provides the best hope for reducing economic losses but sources of resistance are limited. "Truman" soft red winter wheat, developed and released by the University of Missouri has excellent broad-based FHB resistance. This research was conducted to identify QTL associated with five components of resistance in Truman. Two years (2 replications per year) of phenotypic data were collected on these components of resistance on a set of 167 F9 recombinant inbred lines developed from the cross Truman/MO 94-317. Genetic linkage maps were constructed using 160 single sequence repeat and 530 diversity array technology polymorphic markers. Across years, QTL for type II resistance were identified on chromosomes 1BSc, 2BL, 2DS and 3BSc; for disease incidence on 2ASc, 2DS, and 3DS; for disease severity on 2DS, and 3BSc; for Fusarium damage kernels (FDK) on 2ASc, 2DS, and 3BLc; and for low DON on 2ASc, 2DS, and 3BLc. Additional QTL for FDK were identified on 1BLc, 2ASc, and 3BLc; and for DON on 2ASc, 2DS, and 6ALc were identified from phenotypic data collected in Kentucky. The effects of identified QTL ranged from 5.0 to 30.7 % of the total phenotypic variation. Several of these QTL appear to be potentially novel and therefore should enhance FHB resistance in programs attempting to pyramid unique FHB resistance genes through marker-assisted-selection.


Sign in / Sign up

Export Citation Format

Share Document