scholarly journals Resistance to Fusarium head blight [Fusarium culmorum (W.G. Sm.) Sacc.] of winter wheat lines generated from crosses between winter type cultivars and resistant spring wheat Sumai 3

Author(s):  
Evgeniy Dimitrov ◽  
◽  
Zlatina Peycheva Uhr ◽  
Blagoy Andonov ◽  
Nikolaya Velcheva ◽  
...  

2017 ◽  
Vol 107 (12) ◽  
pp. 1486-1495 ◽  
Author(s):  
Rui Wang ◽  
Jianli Chen ◽  
James A. Anderson ◽  
Junli Zhang ◽  
Weidong Zhao ◽  
...  

Fusarium head blight (FHB) is a destructive disease of wheat in humid and semihumid areas of the world. It has emerged in the Pacific Northwest (PNW) in recent years because of changing climate and crop rotation practices. Our objectives in the present study were to identify and characterize quantitative trait loci (QTL) associated with FHB resistance in spring wheat lines developed in the PNW and the International Maize and Wheat Improvement Center. In total, 170 spring wheat lines were evaluated in field and greenhouse trials in 2015 and 2016. Fourteen lines showing consistent resistance in multiple environments were identified. These lines are valuable resources in wheat variety improvement of FHB resistance because they have no Sumai 3 or Sumai 3-related background. The 170 lines were genotyped using a high-density Illumina 90K single-nucleotide polymorphisms (SNP) assay and 10 other non-SNP markers. A genome-wide association analysis was conducted with a mixed model (Q+K). Consistent, significant SNP associations with multiple traits were found on chromosomes 1B, 2B, 4B, 5A, 5B, and 6A. The locus on chromosome 5B for reduced deoxynivalenol content may be novel. The identified QTL are being validated in additional mapping studies and the identified resistant lines are being used in variety development for FHB resistance and facilitated by marker-assisted selection.


Toxins ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 2 ◽  
Author(s):  
Tomasz Góral ◽  
Halina Wiśniewska ◽  
Piotr Ochodzki ◽  
Linda Nielsen ◽  
Dorota Walentyn-Góral ◽  
...  

Winter wheat lines were evaluated for their reaction to Fusarium head blight (FHB) after inoculation with Fusarium culmorum in two field experiments. A mixture of two F. culmorum chemotypes was applied (3ADON—deoxynivalenol producing, NIV—nivalenol producing). Different types of resistance were evaluated, including head infection, kernel damage, Fusarium biomass content and trichothecenes B (deoxynivalenol (DON), and nivalenol (NIV)) accumulation in grain. The aim of the study was to find relationships between different types of resistance. Head infection (FHB index) and Fusarium damaged kernels (FDK) were visually scored. Fusarium biomass was analysed using real-time PCR. Trichothecenes B accumulation was analysed using gas chromatography. Wheat lines differ in their reaction to inoculation for all parameters describing FHB resistance. We found a wide variability of FHB indexes, FDK, and Fusarium biomass content. Both toxins were present. DON content was about 60% higher than NIV and variability of this proportion between lines was observed. Significant correlation was found between head infection symptoms and FDK. Head infection was correlated with F. culmorum biomass and NIV concentration in grain. No correlation was found between the FHB index and DON concentration. Similarly, FDK was not correlated with DON content, but it was with NIV content; however, the coefficients were higher than for the FHB index. Fusarium biomass amount was positively correlated with both toxins as well as with the FHB index and FDK. Environmental conditions significantly influenced the DON/NIV ratio in grain. In locations where less F. culmorum biomass was detected, the DON amount was higher than NIV, while in locations where more F. culmorum biomass was observed, NIV prevailed over DON.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1690
Author(s):  
Piotr Ochodzki ◽  
Adriana Twardawska ◽  
Halina Wiśniewska ◽  
Tomasz Góral

Fusarium head blight (FHB) can contaminate cereal grains with mycotoxins. Winter wheat can also become infected with FHB and is more resistant than durum wheat to head infection but less than other small-grain cereals. The aim of this study was to identify winter wheat lines that combine low levels of head infection and kernel damage with low levels of grain contamination with mycotoxins. Resistance of 27 winter wheat lines (four with resistance gene Fhb1) and cultivars to FHB was evaluated over a three-year (2017–2019) experiment established in two locations (Poznań and Radzików, Poland). At the anthesis stage, heads were inoculated with Fusarium culmorum isolates. The FHB index was scored, and the percentage of Fusarium-damaged kernels (FDKs) was assessed. The grain was analyzed for type B trichothecenes (deoxynivalenol and derivatives and nivalenol) and zearalenone content. The average FHB index of both locations was 12.9%. The proportion of FDK was 6.9% in weight and 8.5% in number. The average content of deoxynivalenol amounted to 3.543 mg/kg, and the average amount of nivalenol was 2.115 mg/kg. In total, we recorded 5.804 m/kg of type B trichothecenes. The zearalenone content in the grain was 0.214 mg/kg. Relationships between the FHB index, FDK, and mycotoxin contents were highly significant for wheat lines; however, these relationships were stronger for FDK than for FHB index. Breeding lines combining all types of FHB resistance were observed, five of which had resistance levels similar to those of wheat lines with the Fhb1 gene.


2011 ◽  
Vol 47 (Special Issue) ◽  
pp. S123-S129 ◽  
Author(s):  
J. Chrpová ◽  
V. Šíp ◽  
T. Sedláček ◽  
L. Štočková ◽  
O. Veškrna ◽  
...  

The effect of selection for two donor-QTL from Fusarium head blight (FHB) resistant spring wheat variety Sumai 3 on the reduction of deoxynivalenol (DON) content and FHB index was evaluated in field trials over two years (2008, 2009) following artificial inoculation with Fusarium culmorum. This study was conducted on populations of recombinant inbred lines derived from two crosses, Sumai 3/Swedget and Sumai 3/SG-S 191-01. DON content and FHB index were significantly reduced in both crosses in the genotype classes with two stacked donor QTL on chromosomes 3B and 5A in comparison to genotype classes with no donor QTL. In the cross Sumai 3/Swedget the selection for QTL alleles from 3B and 5A resulted in a 63.4% reduction in DON content, and a 51.8% reduction in the FHB index. Similarly, there was a 35.9% and 31.9% reduction, respectively, in the cross Sumai 3/SG-S 191-01. The single effect of the donor-QTL allele from 3B was significant only in the cross Sumai 3/Swedjet. The presence or absence of awns affected both DON content and FHB index in both populations, but was only significantly in the cross Sumai 3/SG-S 191-01. In this cross the effect of selection for fully awned genotypes was particularly evident on a reduction of both DON and FHB index in classes with neither donor QTL, or the 3B QTL. However, the data indicate that the “awnedness” effect on FHB resistance may be highly variable and is probably greater on reducing FHB symptoms than on DON content. The results confirmed that marker-based introgression of resistance QTLs on chromosomes 3B and 5A in traditional breeding materials can enrich populations for resistance types, but it was also shown that the effect of marker-based selection need not be large in all crosses and a similar effect can probably be reached by indirect selection for some FHB-related traits.


2005 ◽  
Vol 95 (10) ◽  
pp. 1225-1236 ◽  
Author(s):  
P. A. Paul ◽  
P. E. Lipps ◽  
L. V. Madden

The association between Fusarium head blight (FHB) intensity and deoxynivalenol (DON) accumulation in harvested grain is not fully understood. A quantitative review of research findings was performed to determine if there was a consistent and significant relationship between measures of Fusarium head blight intensity and DON in harvested wheat grain. Results from published and unpublished studies reporting correlations between DON and Fusarium head blight “index” (IND; field or plot-level disease severity), incidence (INC), diseased-head severity (DHS), and Fusarium-damaged kernels (FDK) were analyzed using meta-analysis to determine the overall magnitude, significance, and precision of these associations. A total of 163 studies was analyzed, with estimated correlation coefficients (r) between -0.58 and 0.99. More than 65% of all r values were >0.50, whereas less that 7% were <0. The overall mean correlation coefficients for all relationships between DON and disease intensity were significantly different from zero (P < 0.001). Based on the analysis of Fisher-transformed r values ( zr values), FDK had the strongest relationship with DON, with a mean r of 0.73, followed by IND (r = 0.62), DHS (r = 0.53), and INC (r = 0.52). The mean difference between pairs of transformed zr values (zd ) was significantly different from zero for all pairwise comparisons, except the comparison between INC and DHS. Transformed correlations were significantly affected by wheat type (spring versus winter wheat), study type (fungicide versus genotype trials), and study location (U.S. spring- and winter-wheat-growing regions, and other wheat-growing regions). The strongest correlations were observed in studies with spring wheat cultivars, in fungicide trials, and in studies conducted in U.S. spring-wheat-growing regions. There were minor effects of magnitude of disease intensity (and indirectly, environment) on the transformed correlations.


2007 ◽  
Vol 97 (2) ◽  
pp. 211-220 ◽  
Author(s):  
P. A. Paul ◽  
P. E. Lipps ◽  
D. E. Hershman ◽  
M. P. McMullen ◽  
M. A. Draper ◽  
...  

A meta-analysis of the effect of tebuconazole (e.g., Folicur 3.6F) on Fusarium head blight and deoxynivalenol (DON) content of wheat grain was performed using data collected from uniform fungicide trials (UFTs) conducted at multiple locations across U.S. wheat-growing regions. Response ratios (mean disease and DON levels from tebuconazole-treated plots, divided by mean disease and DON levels from untreated check plots) were calculated for each of 139 studies for tebuconazole effect on Fusarium head blight index (IND; field or plot-level disease severity, i.e., mean proportion of diseased spikelets per spike) and 101 studies for tebuconazole effect on DON contamination of harvested grain. A random-effects meta-analysis was performed on the log-transformed ratios, and the estimated mean log ratios were transformed to estimate the mean (expected) percent control for IND ( CIND ) and DON ( CDON). A mixed effects meta-analysis was then done to determine the effects of wheat type (spring versus winter wheat) and disease and DON levels in the controls on the log ratios. Tebuconazole was more effective at limiting IND than DON, with CIND and CDON values of 40.3 and 21.6%, respectively. The efficacy of tebuconazole as determined by the impact on both IND and DON was greater in spring wheat than in winter wheat (P < 0.01), with a 13.2% higher CIND and a 12.4% higher CDON in spring wheat than in winter wheat. In general, CIND and CDON were both at their lowest values (and not significantly different from 0) when mean IND and DON in the controls, respectively, were low (≤2% for IND and <1 ppm for DON). CIND was 25% higher in studies with mean IND between 2 and 15% than in studies with mean IND ≤ 2%, whereas CDON was 28.8% higher in studies with mean DON between 1 and 10 ppm than in studies with mean DON < 1 ppm. The between-study variance was significantly greater than 0 (P < 0.01), indicating considerable (unexplained) variability in percent control.


2008 ◽  
Vol 43 (No. 1) ◽  
pp. 16-31 ◽  
Author(s):  
V. Šíp ◽  
J. Chrpová ◽  
L. Leišová ◽  
S. Sýkorová ◽  
L. Kučera ◽  
...  

Reactions to artificial infection with <i>Fusarium culmorum</i> and (metconazole- or tebuconazole-based) fungicides were studied in nine winter wheat cultivars that were evaluated in field experiments at the location Prague-Ruzyne for four years (2001&minus;2004) for deoxynivalenol (DON) content in grain, pathogen DNA content (Ct) by real-time quantitative PCR, percentage of Fusarium damaged grains (FDG), symptom scores and reductions in grain yield components. All examined traits were highly affected by conditions of experimental years and interactions with cultivars and treatments. Moderately resistant cultivars Arina and Petrus were included in the first homogeneous group in all traits, including the pathogen DNA content. To predict cultivar resistance to Fusarium head blight and accumulation of DON, the examination of the percentage of FDG in different environments appeared to be useful from practical aspects. The pathogen DNA content was significantly related to the content of DON under different conditions, however, the correlation coefficients ranged between 0.42 and 0.92. Different levels of DON could be detected at similar pathogen contents. The higher colonization of grain by the fungus was mostly connected with a strongly reduced amount of DON per pathogen unit (DON/Ct ratio). The fungicide treatment had a significant effect on a reduction in all traits except DON/Ct, but the effects on different traits were not often proportional and they were highly variable in the particular years (range 10&minus;69%) and cultivars (range < 0&minus;60%). While the application of fungicide caused a reduction in DON content in all cultivars, an increase in pathogen content after the application of fungicides was not exceptional. The low fungicide effect on a reduction in pathogen content was connected with higher temperatures (temperature extremes) in a 30-day period of disease development. The efficacy of fungicide treatment for DON was low at high pathogen content and late heading. The use of the collected data to improve control measures is discussed.


2011 ◽  
Vol 42 (No. 4) ◽  
pp. 137-141 ◽  
Author(s):  
J. Chrpová ◽  
V. Šíp ◽  
E. Matějová ◽  
S. Sýkorová

Progression of deoxynivalenol (DON) concentrations in spikes and kernels was studied in relation to Fusarium head blight (FHB) symptoms in five winter wheat cultivars, differing in resistance to FHB, after single floret inoculation with an aggressive isolate of Fusarium culmorum. After inoculation in field conditions the spikes were detached from the plant and kept in the greenhouse under controlled conditions. High concentrations of DON were detected in susceptible cultivars at an early stage of pathogenesis (7 days after inoculation). Over the whole examined 21-day period and also at maturity spikes contained more DON than kernels. While differences between cultivars in the accumulation of DON were highly expressed already 7 days after inoculation, differences in symptomatic reactions were not clear until day 21. Owing to the reported crucial role of DON at early stages of pathogenesis, the importance of appropriate timing of fungicide application is highly stressed. &nbsp;


Sign in / Sign up

Export Citation Format

Share Document