scholarly journals Evolutionary Features in the Structure and Function of Bacterial Toxins

Toxins ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 15 ◽  
Author(s):  
Raj Kumar ◽  
Thomas M. Feltrup ◽  
Roshan V. Kukreja ◽  
Kruti B. Patel ◽  
Shuowei Cai ◽  
...  

Toxins can function both as a harmful and therapeutic molecule, depending on their concentrations. The diversity in their function allows us to ask some very pertinent questions related to their origin and roles: (a) What makes them such effective molecules? (b) Are there evolutionary features encoded within the structures of the toxins for their function? (c) Is structural hierarchy in the toxins important for maintaining their structure and function? (d) Do protein dynamics play a role in the function of toxins? and (e) Do the evolutionary connections to these unique features and functions provide the fundamental points in driving evolution? In light of the growing evidence in structural biology, it would be appropriate to suggest that protein dynamics and flexibility play a much bigger role in the function of the toxin than the structure itself. Discovery of IDPs (intrinsically disorder proteins), multifunctionality, and the concept of native aggregation are shaking the paradigm of the requirement of a fixed three-dimensional structure for the protein’s function. Growing evidence supporting the above concepts allow us to redesign the structure-function aspects of the protein molecules. An evolutionary model is necessary and needs to be developed to study these important aspects. The criteria for a well-defined model would be: (a) diversity in structure and function, (b) unique functionality, and (c) must belong to a family to define the evolutionary relationships. All these characteristics are largely fulfilled by bacterial toxins. Bacterial toxins are diverse and widely distributed in all three forms of life (Bacteria, Archaea and Eukaryotes). Some of the unique characteristics include structural folding, sequence and functional combination of domains, targeting a cellular process to execute their function, and most importantly their flexibility and dynamics. In this work, we summarize certain unique aspects of bacterial toxins, including role of structure in defining toxin function, uniqueness in their enzymatic function, and interaction with their substrates and other proteins. Finally, we have discussed the evolutionary aspects of toxins in detail, which will help us rethink the current evolutionary theories. A careful study, and appropriate interpretations, will provide answers to several questions related to the structure-function relationship of proteins, in general. Additionally, this will also allow us to refine the current evolution theories.

Author(s):  
Mubarak A. Alamri ◽  
Ahmed D. Alafnan ◽  
Obaid Afzal ◽  
Alhumaidi B. Alabbas ◽  
Safar M. Alqahtani

Background: The STE20/SPS1-related proline/alanine-rich kinase (SPAK) is a component of WNKSPAK/OSR1 signaling pathway that plays an essential role in blood pressure regulation. The function of SPAK is mediated by its highly conserved C-terminal domain (CTD) that interacts with RFXV/I motifs of upstream activators, WNK kinases, and downstream substrate, cation-chloride cotransporters. Objective: To determine and validate the three-dimensional structure of the CTD of SPAK and to study and analyze its interaction with the RFXV/I motifs. Methods: A homology model of SPAK CTD was generated and validated through multiple approaches. The model was based on utilizing the OSR1 protein kinase as a template. This model was subjected to 100 ns molecular dynamic (MD) simulation to evaluate its dynamic stability. The final equilibrated model was used to dock the RFQV-peptide derived from WNK4 into the primary pocket that was determined based on the homology sequence between human SPAK and OSR1 CTDs. The mechanism of interaction, conformational rearrangement and dynamic stability of the binding of RFQV-peptide to SPAK CTD were characterized by molecular docking and molecular dynamic simulation. Results: The MD simulation suggested that the binding of RFQV induces a large conformational change due to the distribution of salt bridge within the loop regions. These results may help in understanding the relation between the structure and function of SPAK CTD and to support drug design of potential SPAK kinase inhibitors as antihypertensive agents. Conclusion: This study provides deep insight into SPAK CTD structure and function relationship.


2020 ◽  
Vol 13 (1) ◽  
pp. 31-79
Author(s):  
Dan Priel

AbstractA popular view among tort theorists is that an explanation of tort law must take account its “structure,” since this structure constitutes the law’s “self-understanding.” This view is used to both criticize competing functional accounts of tort law, especially economic ones, that are said to ignore tort law’s structure, and, more constructively, as a basis for explaining various tort doctrines. In this essay, I consider this argument closely and conclude that it is faulty. To be valid, one needs a non-question begging way of identifying the essence of tort law. I argue that law’s “self-understanding” can only make sense if it means the understanding of certain people. Examining those, I conclude that the claim of structuralists is false, for there are many people who take its function to be central. I then further show that if one wishes to understand the development of tort law’s doctrine one must take both structure and function into account. I demonstrate this claim by examining the development of the doctrine dealing with causal uncertainty and vicarious liability.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0171355 ◽  
Author(s):  
Roshni Bhattacharya ◽  
Peter W. Rose ◽  
Stephen K. Burley ◽  
Andreas Prlić

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
A.E. Naas ◽  
A.K. MacKenzie ◽  
B. Dalhus ◽  
V.G.H. Eijsink ◽  
P.B. Pope

Abstract Previous gene-centric analysis of a cow rumen metagenome revealed the first potentially cellulolytic polysaccharide utilization locus, of which the main catalytic enzyme (AC2aCel5A) was identified as a glycoside hydrolase (GH) family 5 endo-cellulase. Here we present the 1.8 Å three-dimensional structure of AC2aCel5A and characterization of its enzymatic activities. The enzyme possesses the archetypical (β/α)8-barrel found throughout the GH5 family and contains the two strictly conserved catalytic glutamates located at the C-terminal ends of β-strands 4 and 7. The enzyme is active on insoluble cellulose and acts exclusively on linear β-(1,4)-linked glucans. Co-crystallization of a catalytically inactive mutant with substrate yielded a 2.4 Å structure showing cellotriose bound in the −3 to −1 subsites. Additional electron density was observed between Trp178 and Trp254, two residues that form a hydrophobic “clamp”, potentially interacting with sugars at the +1 and +2 subsites. The enzyme’s active-site cleft was narrower compared to the closest structural relatives, which in contrast to AC2aCel5A, are also active on xylans, mannans and/or xyloglucans. Interestingly, the structure and function of this enzyme seem adapted to less-substituted substrates such as cellulose, presumably due to the insufficient space to accommodate the side-chains of branched glucans in the active-site cleft.


Amino Acids ◽  
2019 ◽  
Vol 51 (10-12) ◽  
pp. 1409-1431 ◽  
Author(s):  
Luigi Grassi ◽  
Chiara Cabrele

Abstract Peptides and proteins are preponderantly emerging in the drug market, as shown by the increasing number of biopharmaceutics already approved or under development. Biomolecules like recombinant monoclonal antibodies have high therapeutic efficacy and offer a valuable alternative to small-molecule drugs. However, due to their complex three-dimensional structure and the presence of many functional groups, the occurrence of spontaneous conformational and chemical changes is much higher for peptides and proteins than for small molecules. The characterization of biotherapeutics with modern and sophisticated analytical methods has revealed the presence of contaminants that mainly arise from oxidation- and elimination-prone amino-acid side chains. This review focuses on protein chemical modifications that may take place during storage due to (1) oxidation (methionine, cysteine, histidine, tyrosine, tryptophan, and phenylalanine), (2) intra- and inter-residue cyclization (aspartic and glutamic acid, asparagine, glutamine, N-terminal dipeptidyl motifs), and (3) β-elimination (serine, threonine, cysteine, cystine) reactions. It also includes some examples of the impact of such modifications on protein structure and function.


2006 ◽  
Vol 12 (4) ◽  
pp. 487-512 ◽  
Author(s):  
Chris Salzberg

The relationship between structure and function is explored via a system of labeled directed graph structures upon which a single elementary read/write rule is applied locally. Boundaries between static (information-carrying) and active (information-processing) objects, imposed by mandate of the rules or physics in earlier models, emerge instead as a result of a structure-function dynamic that is reflexive: objects may operate directly on their own structure. A representation of an arbitrary Turing machine is reproduced in terms of structural constraints by means of a simple mapping from tape squares and machine states to a uniform medium of nodes and links, establishing computation universality. Exploiting flexibility of the formulation, examples of other unconventional “self-computing” structures are demonstrated. A straightforward representation of a kinematic machine system based on the model devised by Laing is also reproduced in detail. Implications of the findings are discussed in terms of their relation to other formal models of computation and construction. It is argued that reflexivity of the structure-function relationship is a critical informational dynamic in biochemical systems, overlooked in previous models but well captured by the proposed formulation.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4396 ◽  
Author(s):  
Dickson Kinyanyi ◽  
George Obiero ◽  
George F.O. Obiero ◽  
Peris Amwayi ◽  
Stephen Mwaniki ◽  
...  

African swine fever virus (ASFV) is the etiological agent of ASF, a fatal hemorrhagic fever that affects domestic pigs. There is currently no vaccine against ASFV, making it a significant threat to the pork industry. The ASFV genome sequence has been published; however, about half of ASFV open reading frames have not been characterized in terms of their structure and function despite being essential for our understanding of ASFV pathogenicity. The present study reports the three-dimensional structure and function of uncharacterized protein, pB263R (NP_042780.1), an open reading frame found in all ASFV strains. Sequence-based profiling and hidden Markov model search methods were used to identify remote pB263R homologs. Iterative Threading ASSEmbly Refinement (I-TASSER) was used to model the three-dimensional structure of pB263R. The posterior probability of fold family assignment was calculated using TM-fold, and biological function was assigned using TM-site, RaptorXBinding, Gene Ontology, and TM-align. Our results suggests that pB263R has the features of a TATA-binding protein and is thus likely to be involved in viral gene transcription.


Sign in / Sign up

Export Citation Format

Share Document