scholarly journals Naturally Occurring Fusarium Species and Mycotoxins in Oat Grains from Manitoba, Canada

Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 670
Author(s):  
M. Nazrul Islam ◽  
Mourita Tabassum ◽  
Mitali Banik ◽  
Fouad Daayf ◽  
W. G. Dilantha Fernando ◽  
...  

Fusarium head blight (FHB) can lead to dramatic yield losses and mycotoxin contamination in small grain cereals in Canada. To assess the extent and severity of FHB in oat, samples collected from 168 commercial oat fields in the province of Manitoba, Canada, during 2016–2018 were analyzed for the occurrence of Fusarium head blight and associated mycotoxins. Through morphological and molecular analysis, F. poae was found to be the predominant Fusarium species affecting oat, followed by F. graminearum, F. sporotrichioides, F. avenaceum, and F. culmorum. Deoxynivalenol (DON) and nivalenol (NIV), type B trichothecenes, were the two most abundant Fusarium mycotoxins detected in oat. Beauvericin (BEA) was also frequently detected, though at lower concentrations. Close clustering of F. poae and NIV/BEA, F. graminearum and DON, and F. sporotrichioides and HT2/T2 (type A trichothecenes) was detected in the principal component analysis. Sampling location and crop rotation significantly impacted the concentrations of Fusarium mycotoxins in oat. A phylogenetic analysis of 95 F. poae strains from Manitoba was conducted using the concatenated nucleotide sequences of Tef-1α, Tri1, and Tri8 genes. The results indicated that all F. poae strains belong to a monophyletic lineage. Four subgroups of F. poae strains were identified; however, no correlations were observed between the grouping of F. poae strains and sample locations/crop rotations.

1995 ◽  
Vol 75 (1) ◽  
pp. 261-267 ◽  
Author(s):  
L. S. L. Wong ◽  
D. Abramson ◽  
A. Tekauz ◽  
D. Leisle ◽  
R. I. H. McKenzie

Fusarium head blight (FHB) of wheat has recently become more prevalent in Manitoba, Canada. The objectives of this study were to assess the pathogenicity of Fusarium species isolated from infected wheat spikes, determine their potential to produce trichothecene mycotoxins and evaluate wheat cultivars for resistance to these Fusarium species. This information is a prerequisite to the development of cultivars with effective resistance to FHB in Manitoba. Eight Chinese and three Canadian wheat cultivars were evaluated against individual strains of seven Fusarium species singly in the field. Severity of FHB was measured as percentage of discolored peduncles and percentage of tombstone kernels. On this basis, Fusarium culmorum and F. graminearum were highly pathogenic, F. sporotrichioides had intermediate pathogenicity, and the other species were weakly pathogenic. For F. culmorum and F. graminearum, FHB severity correlated positively with kernel weight reduction and recovery of Fusarium species from the seed and correlated negatively with seed germination. Fusarium species varied in their ability to produce trichothecenes in infected wheat spikes. Wheat inoculated with F. poae contained both type A and B trichothecenes, while that inoculated with F. culmorum and F. graminearum produced type B only. Wheat inoculated with F. sporotrichioides contained type A trichothecenes, while that inoculated with F. avenaceum contained no detectable trichothecenes. Concentration of DON correlated positively with percentage of tombstone kernels in F. culmorum and F. graminearum, and that of HT-2 toxin correlated positively with percentage tombstone kernels in F. sporotrichioides. Biggar, Katepwa and Sceptre wheats were susceptible to F. culmorum and F. graminearum. High levels of resistance, expressed as low FHB severity combined with low trichothecene production, were found in several Chinese cultivars. These traits could be incorporated in adapted cultivars and be monitored by use of artificial inoculation. Key words:Fusarium culmorum, Fusarium graminearum, fusarium head blight, mycotoxins, resistance, wheat


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 801
Author(s):  
Dimitrios Drakopoulos ◽  
Michael Sulyok ◽  
Eveline Jenny ◽  
Andreas Kägi ◽  
Irene Bänziger ◽  
...  

Fusarium head blight (FHB) is a devastating fungal disease of small-grain cereals that causes significant yield losses and mycotoxin contamination, diminishing food and feed safety worldwide. In contrast to wheat, little is known about the agricultural practices that influence FHB and Fusarium mycotoxins in barley. Thus, a nationwide survey was conducted across Switzerland for harvest samples in 2016 and 2017, accompanied with a questionnaire to obtain information about the agricultural practices in each barley field. In total, 253 grain and 237 straw samples were analyzed. In both years, F. graminearum was the predominant Fusarium species in grains followed by F. avenaceum and F. poae. Growing maize before barley was associated with increased amount of F. graminearum DNA in grains and straw as well as with elevated concentrations of deoxynivalenol in grains of barley. On the other hand, growing pasture before barley resulted in increased incidence of F. poae and concentration of numerous mycotoxins in grains (e.g., enniatins) and straw (e.g., beauvericin). Reduced tillage practices were linked to increased incidence of F. graminearum and deoxynivalenol content in grains and straw. In contrast, conventional tillage was linked to higher incidence of F. poae. Moreover, use of spring barley was associated with decreased amount of F. graminearum DNA in grains and straw, but increased incidence of F. poae and F. avenaceum. Use of the spring variety Eunova was linked to increased concentrations of several Fusarium mycotoxins in grains (e.g., enniatins and nivalenol). Furthermore, the application of strobilurin-based fungicides was associated with higher deoxynivalenol and beauvericin contents in grains. The application of plant growth regulators was associated with increased concentration of some Fusarium mycotoxins in grains (e.g., culmorin), while absence of growth regulators application was linked to elevated concentration of some other mycotoxins (e.g., nivalenol). We conclude that individual agricultural practices can suppress some FHB causing species and reduce the associated mycotoxins, but can promote others. Hence, integrated control measures combining numerous prevention and intervention strategies should be applied for the sustainable management of mycotoxins in barley.


1994 ◽  
Vol 72 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Zhivko Atanassov ◽  
Chiharu Nakamura ◽  
Naoki Mori ◽  
Chukichi Kaneda ◽  
Hajime Kato ◽  
...  

In vitro production of trichothecene mycotoxins, deoxynivalenol, nivalenol, T-2 toxins, and their derivatives was studied in rice culture using 30 strains from seven Fusarium species. Six strains of three Fusarium species were selected for the evaluation of mycotoxin production and pathogenicity after artificial inoculation to seven wheat lines with different levels of resistance or susceptibility and their eight F1's. Three criteria were used for the evaluation: the reduction of seed set, the reduction of grain weight, and the concentration of mycotoxins in infected grain. Significant variability was observed among Fusarium strains, wheat genotypes, and in the interaction between them. The contribution of Fusarium strains, however, was far greater than that of the other two factors. The kinds and relative amounts of mycotoxins produced in rice culture were consistent with those present in infected grain with some exceptions. Significant correlations were found between the grain weight reduction and the mycotoxin concentration and between the level of resistance of the wheat genotypes under the artificial and natural conditions of infection. The biological role of Fusarium mycotoxins in pathogenicity and wheat resistance to Fusarium head blight is discussed. Key words: Fusarium head blight (scab), Fusarium mycotoxins, Fusarium pathogenicity, wheat resistance to Fusarium head blight.


Author(s):  
Tomasz Góral ◽  
Piotr Ochodzki ◽  
Linda Kærgaard Nielsen ◽  
Dorota Walentyn-Góral

Grain samples of spring barley from the 2009 and 2010 harvest were analysed for the content of DNA of Fusarium species and Fusarium toxins (type B trichothecenes). Samples originated from different fields in Radzików, Central Poland. Qualitative and quantitative determination of Fusarium species in the grain was performed using a real-time PCR. Fusarium toxins in the grain were analysed by gas chromatography. Seven Fusarium species were detected in barley grain. The dominating species were F. avenaceum, F. graminearum and F. poae. The presence of F. culmorum, F. langsethiae, F. sporotrichioides and F. tricinctum was also detected. The concentration of trichothecene toxins in grain (deoxynivalenol, nivalenol) was low. The highest correlation coefficient of deoxynivalenol vs. Fusarium DNA was found for F. graminearum. Regarding nivalenol, the highest correlation coefficient was with F. poae DNA.  


Author(s):  
Esteban Valverde-Bogantes ◽  
Andreia Bianchini ◽  
Stephen Wegulo ◽  
Heather Hallen-Adams

Fusarium head blight (FHB) is an economically important disease caused by several Fusarium species affecting wheat and other small grain cereals. In recent years, reports of shifts in populations of FHB pathogens around the world have shown that these populations are dynamic and change continuously, often resulting in increased yield losses or changes in the mycotoxins produced in the grain, which highlights the need for increased vigilance. The objective of this research was to identify the species and trichothecene genotypes of FHB pathogens in Nebraska in order to monitor their populations and the major toxigenic risks in the state. A total of 74 single-spore Fusarium isolates were obtained from 42 FHB symptomatic wheat spikes collected from Nebraska fields during the growing seasons in 2015-2018. Most of the isolates were identified as F. graminearum (n=67) based on translation elongation factor 1α (TEF1), trichothecene 3-O-acetyltransferase (TRI101), and reductase (RED) sequences. Additional species included F. boothii (n=3), F. poae (n=2), F. acuminatum (n=1), and one isolate was an F. graminearum × F. boothii interspecific hybrid. All F. graminearum and F. boothii isolates had the 15-ADON trichothecene genotype. This study shows that F. graminearum is not the only pathogen causing FHB in Nebraska and helps expand knowledge on the worldwide distribution of F. boothii. The information obtained from this survey will be useful in developing effective FHB management strategies in Nebraska, since different pathogen populations can cause varying levels of disease intensity and can be selectively sensitive to management tactics.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1128
Author(s):  
Emese Varga-László ◽  
Katalin Puskás ◽  
Balázs Varga ◽  
Zsuzsanna Farkas ◽  
Ottó Veisz ◽  
...  

One of the most important limiting factors of high-quality wheat production is Fusarium head blight infection. The various Fusarium species not only may cause severe yield loss but—due to toxin production—the grains also might become unsuitable for animal and human nutrition. In the present research, our aim was to examine the Fusarium resistance of a special mapping population (’BKT9086-95/Mv Magvas’) and identify the genetic factors and chromosome regions determining the tolerance to Fusarium culmorum and Fusarium graminearum. The connection between the genetic background and the Fusarium head blight sensitivity was confirmed by the analysis of variance in the case of three markers, among which the co-dominant pattern of the gtac2 and gtac3 amplified fragment length polymorphism (AFLP) markers might indicate a marker development possibility. Consistently expressed quantitative trait loci (QTLs) were identified on the chromosomes 2A, 2B, 2D, 5A, and 7A. Loci linked to resistance were identified on 11 chromosomes. During the investigation of phenological and morphological traits (heading date, plant height, ear compactness) influencing the head blight resistance and the location of the resistance QTLs, the total overlap was found in the case of the region identified on chromosome 2D and partial overlap on chromosomes 2A and 2B. Whereas 5A may be a rare allelic variant of a novel QTL.


2018 ◽  
Vol 152 (4) ◽  
pp. 869-884 ◽  
Author(s):  
E. Alisaac ◽  
J. Behmann ◽  
M. T. Kuska ◽  
H.-W. Dehne ◽  
A.-K. Mahlein

Sign in / Sign up

Export Citation Format

Share Document