Mycotoxin production and pathogenicity of Fusarium species and wheat resistance to Fusarium head blight

1994 ◽  
Vol 72 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Zhivko Atanassov ◽  
Chiharu Nakamura ◽  
Naoki Mori ◽  
Chukichi Kaneda ◽  
Hajime Kato ◽  
...  

In vitro production of trichothecene mycotoxins, deoxynivalenol, nivalenol, T-2 toxins, and their derivatives was studied in rice culture using 30 strains from seven Fusarium species. Six strains of three Fusarium species were selected for the evaluation of mycotoxin production and pathogenicity after artificial inoculation to seven wheat lines with different levels of resistance or susceptibility and their eight F1's. Three criteria were used for the evaluation: the reduction of seed set, the reduction of grain weight, and the concentration of mycotoxins in infected grain. Significant variability was observed among Fusarium strains, wheat genotypes, and in the interaction between them. The contribution of Fusarium strains, however, was far greater than that of the other two factors. The kinds and relative amounts of mycotoxins produced in rice culture were consistent with those present in infected grain with some exceptions. Significant correlations were found between the grain weight reduction and the mycotoxin concentration and between the level of resistance of the wheat genotypes under the artificial and natural conditions of infection. The biological role of Fusarium mycotoxins in pathogenicity and wheat resistance to Fusarium head blight is discussed. Key words: Fusarium head blight (scab), Fusarium mycotoxins, Fusarium pathogenicity, wheat resistance to Fusarium head blight.

2009 ◽  
Vol 89 (4) ◽  
pp. 739-743 ◽  
Author(s):  
A Badea ◽  
F Eudes ◽  
R Graf ◽  
A Laroche ◽  
A E Berg ◽  
...  

The in vitro activity of five antimicrobial peptides was evaluated against several Fusarium species that affect wheat in Canada. Among the peptides tested (10R, 11R, BMAP-18, MsrA2 and MsrA3) 10R was most effective against conidial germination, whereas MsrA2 showed activity against mycelial growth. Antimicrobial peptides 10R and MsrA2 were identified as potential candidates for engineering resistance against common species causing fusarium head blight in wheat. Key words: Antimicrobial peptides, fusarium head blight, conidia, mycelia


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 801
Author(s):  
Dimitrios Drakopoulos ◽  
Michael Sulyok ◽  
Eveline Jenny ◽  
Andreas Kägi ◽  
Irene Bänziger ◽  
...  

Fusarium head blight (FHB) is a devastating fungal disease of small-grain cereals that causes significant yield losses and mycotoxin contamination, diminishing food and feed safety worldwide. In contrast to wheat, little is known about the agricultural practices that influence FHB and Fusarium mycotoxins in barley. Thus, a nationwide survey was conducted across Switzerland for harvest samples in 2016 and 2017, accompanied with a questionnaire to obtain information about the agricultural practices in each barley field. In total, 253 grain and 237 straw samples were analyzed. In both years, F. graminearum was the predominant Fusarium species in grains followed by F. avenaceum and F. poae. Growing maize before barley was associated with increased amount of F. graminearum DNA in grains and straw as well as with elevated concentrations of deoxynivalenol in grains of barley. On the other hand, growing pasture before barley resulted in increased incidence of F. poae and concentration of numerous mycotoxins in grains (e.g., enniatins) and straw (e.g., beauvericin). Reduced tillage practices were linked to increased incidence of F. graminearum and deoxynivalenol content in grains and straw. In contrast, conventional tillage was linked to higher incidence of F. poae. Moreover, use of spring barley was associated with decreased amount of F. graminearum DNA in grains and straw, but increased incidence of F. poae and F. avenaceum. Use of the spring variety Eunova was linked to increased concentrations of several Fusarium mycotoxins in grains (e.g., enniatins and nivalenol). Furthermore, the application of strobilurin-based fungicides was associated with higher deoxynivalenol and beauvericin contents in grains. The application of plant growth regulators was associated with increased concentration of some Fusarium mycotoxins in grains (e.g., culmorin), while absence of growth regulators application was linked to elevated concentration of some other mycotoxins (e.g., nivalenol). We conclude that individual agricultural practices can suppress some FHB causing species and reduce the associated mycotoxins, but can promote others. Hence, integrated control measures combining numerous prevention and intervention strategies should be applied for the sustainable management of mycotoxins in barley.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 670
Author(s):  
M. Nazrul Islam ◽  
Mourita Tabassum ◽  
Mitali Banik ◽  
Fouad Daayf ◽  
W. G. Dilantha Fernando ◽  
...  

Fusarium head blight (FHB) can lead to dramatic yield losses and mycotoxin contamination in small grain cereals in Canada. To assess the extent and severity of FHB in oat, samples collected from 168 commercial oat fields in the province of Manitoba, Canada, during 2016–2018 were analyzed for the occurrence of Fusarium head blight and associated mycotoxins. Through morphological and molecular analysis, F. poae was found to be the predominant Fusarium species affecting oat, followed by F. graminearum, F. sporotrichioides, F. avenaceum, and F. culmorum. Deoxynivalenol (DON) and nivalenol (NIV), type B trichothecenes, were the two most abundant Fusarium mycotoxins detected in oat. Beauvericin (BEA) was also frequently detected, though at lower concentrations. Close clustering of F. poae and NIV/BEA, F. graminearum and DON, and F. sporotrichioides and HT2/T2 (type A trichothecenes) was detected in the principal component analysis. Sampling location and crop rotation significantly impacted the concentrations of Fusarium mycotoxins in oat. A phylogenetic analysis of 95 F. poae strains from Manitoba was conducted using the concatenated nucleotide sequences of Tef-1α, Tri1, and Tri8 genes. The results indicated that all F. poae strains belong to a monophyletic lineage. Four subgroups of F. poae strains were identified; however, no correlations were observed between the grouping of F. poae strains and sample locations/crop rotations.


2017 ◽  
Vol 6 (5) ◽  
pp. 186-193
Author(s):  
Vipin Panwar ◽  
Ashok Aggarwal ◽  
Surinder Paul ◽  
Virender Singh ◽  
Pankaj K. Singh ◽  
...  

Fusarium head blight (FHB) or head scab is emerging as a destructive disease affecting the quantity and quality of wheat worldwide. Several Fusarium spe-cies have been associated with the disease but their composition varies among geographical regions and years. Climatic factors like temperature, pH and humidity influence the growth, survival and infestation of Fusarium species. In the present study, response of thirty six isolates of three Fusarium spp. viz F. graminearum, F. oxysporum and F. pallidoroseum (F. semitectum) to different temperature and pH was assessed by analysing their in vitro growth rate (mm/day) on potato dextrose agar (PDA) medium. We found that all the isolates responded differentially but interestingly isolates of F. graminearum showed better tolerance at broader range of temperature and pH. This attributes make F. graminearum a widely distributed and potent pathogen of wheat.


Toxins ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 438
Author(s):  
Mary E. Ridout ◽  
Bruce Godfrey ◽  
George Newcombe

Fusarium species coexist as toxigenic, systemic pathogens in sweet corn seed production in southwestern Idaho, USA. We hypothesized that fungal antagonists of seedborne Fusarium would differentially alter production of Fusarium mycotoxins directly and/or systemically. We challenged the Fusarium complex by in vitro antagonism trials and in situ silk and seed inoculations with fungal antagonists. Fungal antagonists reduced growth and sporulation of Fusarium species in vitro from 40.5% to as much as 100%. Pichia membranifaciens and Penicillium griseolum reduced fumonisin production by F. verticillioides by 73% and 49%, respectively, while P. membranifaciens and a novel Penicillium sp. (WPT) reduced fumonisins by F. proliferatum 56% and 78%, respectively. In situ, pre-planting inoculation of seeds with Penicillium WPT systemically increased fumonisins in the resulting crop. Morchella snyderi applied to silks of an F1 cross systemically reduced deoxynivalenol by 47% in mature seeds of the F2. Antagonists failed to suppress Fusarium in mature kernels following silk inoculations, although the ratio of F. verticillioides to total Fusarium double with some inoculants. Fusarium mycotoxin concentrations in sweet corn seed change systemically, as well as locally, in response to the presence of fungal antagonists, although in Fusarium presence in situ was not changed.


2020 ◽  
Vol 13 (2) ◽  
pp. 235-246
Author(s):  
W.Q. Shi ◽  
L.B. Xiang ◽  
D.Z. Yu ◽  
S.J. Gong ◽  
L.J. Yang

Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss in wheat and barley production. Integrated pest management (IPM) is required to control this disease and biofungicides, such as tetramycin, could be a novel addition to IPM strategies. The current study investigated in vitro tetramycin toxicity in Fusarium graminearum and evaluated its effectiveness for the control of Fusarium head blight FHB. Tetramycin was shown to affect three key aspects of Fusarium pathogenicity: spore germination, mycelium growth and deoxynivalenol (DON) production. The in vitro results indicated that tetramycin had strong inhibitory activity on the mycelial growth and spore germination. Field trials indicated that tetramycin treatment resulted in a significant reduction in both the FHB disease index and the level of DON accumulation. The reduced DON content in harvested grain was correlated with the amount of Tri5 mRNA determined by qRT-PCR. Synergistic effects between tetramycin and metconazole, in both the in vitro and field experiments were found. Tetramycin could provide an alternative option to control FHB.


2019 ◽  
Vol 139 (2) ◽  
pp. 251-262 ◽  
Author(s):  
David Sewordor Gaikpa ◽  
Bärbel Lieberherr ◽  
Hans Peter Maurer ◽  
C. Friedrich H. Longin ◽  
Thomas Miedaner

Author(s):  
Tony Twamley ◽  
Mark Gaffney ◽  
Angela Feechan

AbstractFusarium graminearum and Zymoseptoria tritici cause economically important diseases of wheat. F. graminearum is one of the primary causal agents of Fusarium head blight (FHB) and Z. tritici is the causal agent of Septoria tritici blotch (STB). Alternative control methods are required in the face of fungicide resistance and EU legislation which seek to cut pesticide use by 2030. Both fungal pathogens have been described as either hemibiotrophs or necrotrophs. A microbial fermentation-based product (MFP) was previously demonstrated to control the biotrophic pathogen powdery mildew, on wheat. Here we investigated if MFP would be effective against the non-biotrophic fungal pathogens of wheat, F. graminearum and Z. tritici. We assessed the impact of MFP on fungal growth, disease control and also evaluated the individual constituent parts of MFP. Antifungal activity towards both pathogens was found in vitro but MFP only significantly decreased disease symptoms of FHB in planta. In addition, MFP was found to improve the grain number and weight, of uninfected and F. graminearum infected wheat heads.


Sign in / Sign up

Export Citation Format

Share Document