scholarly journals The Investigation on the Dark Sector at the PADME Experiment

Universe ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 59
Author(s):  
Fabio Ferrarotto

In this paper, we present the design and expected performance of the various detectors of the PADME experiment. The experiment design has been optimized for the detection of the final state photons produced along with a “Dark Photon”, decaying to invisible particles, in the annihilation a of 550 MeV positron with an atomic electron of a thin target. The PADME experiment has been built in a new dedicated experimental hall at the Beam Test Facility (BTF) of the INFN Frascati National Laboratories and has been taking data since the third quarter of 2018.

2021 ◽  
Author(s):  
Federica Oliva

Abstract PADME (Positron Annihilation into Dark Matter Experiment) is a fixed target experiment located at the Beam Test Facility (BTF) at the Laboratori Nazionali di Frascati (LNF) designed to search for a massive dark photon A' in the process e+e- into γA', using a positron beam of energy up to 550 MeV.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Amin Aboubrahim ◽  
Michael Klasen ◽  
Pran Nath

Abstract We present a particle physics model to explain the observed enhancement in the Xenon-1T data at an electron recoil energy of 2.5 keV. The model is based on a U(1) extension of the Standard Model where the dark sector consists of two essentially mass degenerate Dirac fermions in the sub-GeV region with a small mass splitting interacting with a dark photon. The dark photon is unstable and decays before the big bang nucleosynthesis, which leads to the dark matter constituted of two essentially mass degenerate Dirac fermions. The Xenon-1T excess is computed via the inelastic exothermic scattering of the heavier dark fermion from a bound electron in xenon to the lighter dark fermion producing the observed excess events in the recoil electron energy. The model can be tested with further data from Xenon-1T and in future experiments such as SuperCDMS.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Anson Hook ◽  
Gustavo Marques-Tavares ◽  
Clayton Ristow

Abstract We present the supernova constraints on an axion-photon-dark photon coupling, which can be the leading coupling to dark sector models and can also lead to dramatic changes to axion cosmology. We show that the supernova bound on this coupling has two unusual features. One occurs because the scattering that leads to the trapping regime converts axions and dark photons into each other. Thus, if one of the two new particles is sufficiently massive, both production and scattering become suppressed and the bounds from bulk emission and trapped (area) emission both weaken exponentially and do not intersection The other unusual feature occurs because for light dark photons, longitudinal modes couple more weakly than transverse modes do. Since the longitudinal mode is more weakly coupled, it can still cause excessive cooling even if the transverse mode is trapped. Thus, the supernova constraints for massive dark photons look like two independent supernova bounds super-imposed on top of each other.


2015 ◽  
Vol 30 (18) ◽  
pp. 1550089 ◽  
Author(s):  
A. L. dos Santos ◽  
D. Hadjimichef

An extension of the Standard Model (SM) is studied, in which two new vector bosons are introduced, a first boson Z' coupled to the SM by the usual minimal coupling, producing an enlarged gauge sector in the SM. The second boson A' field, in the dark sector of the model, remains massless and originates a dark photon γ'. A hybrid mixing scenario is considered based on a combined Higgs and Stueckelberg mechanisms. In a Compton-like process, a photon scattered by a weakly interacting massive particles (WIMP) is converted into a dark photon. This process is studied, in an astrophysical application obtaining an estimate of the impact on stellar cooling of white dwarfs and neutron stars.


Author(s):  
Adriano Luchetta ◽  
Gabriele Manduchi ◽  
Cesare Taliercio ◽  
Anton Soppelsa ◽  
Francesco Paolucci ◽  
...  

2018 ◽  
Vol 89 (10) ◽  
pp. 10I139
Author(s):  
S. Feng ◽  
M. Nocente ◽  
D. Wünderlich ◽  
F. Bonomo ◽  
G. Croci ◽  
...  
Keyword(s):  

2013 ◽  
Vol 88 (9-10) ◽  
pp. 2506-2509 ◽  
Author(s):  
D. Nicolai ◽  
P. Chaumet ◽  
O. Neubauer ◽  
R. Uhlemann

2014 ◽  
Vol 85 (2) ◽  
pp. 02B305 ◽  
Author(s):  
U. Fantz ◽  
P. Franzen ◽  
B. Heinemann ◽  
D. Wünderlich

2018 ◽  
Vol 170 ◽  
pp. 01007 ◽  
Author(s):  
Paola Gianotti

The PADME experiment, by using the positron beam of the Frascati laboratory, aims at searching for signals of a dark photon, A′ . It will evaluate the final state missing mass of the process e+ e- → A′ γ by knowing the beam energy and measuring the four-momentum of the ordinary recoil photon. The precise determination of this quantity, and the capability to reject background events, are the key points for the success of the experiment. In this paper a description of each component of the PADME detector is given.


2019 ◽  
Vol 212 ◽  
pp. 06001 ◽  
Author(s):  
Venelin Kozhuharov

Currently, the existence of a dark sector almost completely decoupled from the Standard Model is a viable solution for numerous long-standing problems in physics, including the nature of dark matter and the muon anomalous magnetic moment. A new gauge mediator, the dark photon, could be the portal to this hidden sector. The most general probe to its existence is the missing mass technique which requires a precise knowledge of the initial state of the process but does not put constraints on the dark photon final states. The experimental approaches to the search for dark photons in positron-on-target annihilation and in mesons decay in flight are presented and the physics reach is discussed.


Sign in / Sign up

Export Citation Format

Share Document