scholarly journals Penrose Process: Its Variants and Astrophysical Applications

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 416
Author(s):  
Zdeněk Stuchlík ◽  
Martin Kološ ◽  
Arman Tursunov

We present a review of the Penrose process and its modifications in relation to the Kerr black holes and naked singularities (superspinars). We introduce the standard variant of this process, its magnetic version connected with magnetized Kerr black holes or naked singularities, the electric variant related to electrically charged Schwarzschild black holes, and the radiative Penrose process connected with charged particles radiating in the ergosphere of magnetized Kerr black holes or naked singularities. We discuss the astrophysical implications of the variants of the Penrose process, concentrating attention to the extreme regime of the magnetic Penrose process leading to extremely large acceleration of charged particles up to ultra-high energy E∼1022 eV around magnetized supermassive black holes with mass M∼1010M⊙ and magnetic intensity B∼104 G. Similarly high energies can be obtained by the electric Penrose process. The extraordinary case is represented by the radiative Penrose process that can occur only around magnetized Kerr spacetimes but just inside their ergosphere, in contrast to the magnetic Penrose process that can occur in a more extended effective ergosphere determined by the intensity of the electromagnetic interaction. The explanation is simple, as the radiative Penrose process is closely related to radiated photons with negative energy whose existence is limited just to the ergosphere.

2016 ◽  
Vol 31 (02n03) ◽  
pp. 1641016
Author(s):  
A. A. Grib ◽  
Yu. V. Pavlov

Three mechanisms of getting high energies in particle collisions in the ergosphere of the rotating black holes are considered. The consequences of these mechanisms for observation of ultra high energy cosmic rays particles on the Earth as result of conversion of superheavy dark matter particles into ordinary particles are discussed.


2004 ◽  
Vol 13 (10) ◽  
pp. 2299-2305 ◽  
Author(s):  
ADAM D. HELFER

I reconsider Hawking's analysis of the effects of gravitational collapse on quantum fields, taking into account interactions between the fields. The ultra-high energy vacuum fluctuations, which had been considered to be an awkward peripheral feature of the analysis, are shown to play a key role. By interactions, they can scatter particles to, or create pairs of particle at, ultra-high energies. The energies rapidly become so great that quantum gravity must play a dominant role. Thus the vicinities of black holes are essentially quantum-gravitational regimes.


2020 ◽  
Vol 29 (1) ◽  
pp. 40-46
Author(s):  
Dmitri L. Khokhlov

AbstractThe studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.


2011 ◽  
Vol 20 (supp02) ◽  
pp. 50-56
Author(s):  
◽  
PETER SCHIFFER

The Pierre Auger Observatory is the world's largest experiment for the measurement of ultra-high energy cosmic rays (UHECRs). These UHECRs are assumed to be to be charged particles, and thus are deflected in cosmic magnetic fields. Recent results of the Pierre Auger Observatory addressing the complex of energy ordering of the UHECRs arrival directions are reviewed in this contribution. So far no significant energy ordering has been observed.


2020 ◽  
Vol 497 (3) ◽  
pp. 2553-2561
Author(s):  
Felicia Krauß ◽  
Emily Calamari ◽  
Azadeh Keivani ◽  
Alexis Coleiro ◽  
Phil A Evans ◽  
...  

ABSTRACT High-energy neutrinos are a promising tool for identifying astrophysical sources of high and ultra-high energy cosmic rays (UHECRs). Prospects of detecting neutrinos at high energies (≳TeV) from blazars have been boosted after the recent association of IceCube-170922A and TXS 0506+056. We investigate the high-energy neutrino, IceCube-190331A, a high-energy starting event (HESE) with a high likelihood of being astrophysical in origin. We initiated a Swift/XRT and UVOT tiling mosaic of the neutrino localization and followed up with ATCA radio observations, compiling a multiwavelength spectral energy distribution (SED) for the most likely source of origin. NuSTAR observations of the neutrino location and a nearby X-ray source were also performed. We find two promising counterpart in the 90 per cent confidence localization region and identify the brightest as the most likely counterpart. However, no Fermi/LAT γ-ray source and no prompt Swift/BAT source is consistent with the neutrino event. At this point, it is unclear whether any of the counterparts produced IceCube-190331A. We note that the Helix Nebula is also consistent with the position of the neutrino event and we calculate that associated particle acceleration processes cannot produce the required energies to generate a high-energy HESE neutrino.


2015 ◽  
Vol 2 ◽  
pp. 39-44 ◽  
Author(s):  
P. L. Biermann ◽  
L. I. Caramete ◽  
A. Meli ◽  
B. N. Nath ◽  
E.-S. Seo ◽  
...  

Abstract. A model is introduced, in which the irregularity spectrum of the Galactic magnetic field beyond the dissipation length scale is first a Kolmogorov spectrum k-5/3 at small scales λ = 2 π/k with k the wave-number, then a saturation spectrum k-1, and finally a shock-dominated spectrum k-2 mostly in the halo/wind outside the Cosmic Ray disk. In an isotropic approximation such a model is consistent with the Interstellar Medium (ISM) data. With this model we discuss the Galactic Cosmic Ray (GCR) spectrum, as well as the extragalactic Ultra High Energy Cosmic Rays (UHECRs), their chemical abundances and anisotropies. UHECRs may include a proton component from many radio galaxies integrated over vast distances, visible already below 3 EeV.


Proceedings ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 13 ◽  
Author(s):  
Zdeněk Stuchlík ◽  
Martin Kološ ◽  
Arman Tursunov

Properties of charged particle motion in the field of magnetized black holes (BHs) imply four possible regimes of behavior of ionized Keplerian disks: survival in regular epicyclic motion, transformation into chaotic toroidal state, destruction due to fall into the BHs, destruction due to escape along magnetic field lines (escape to infinity for disks orbiting Kerr BHs). The regime of the epicyclic motion influenced by very weak magnetic fields can be related to the observed high-frequency quasiperiodic oscillations. In the case of very strong magnetic fields particles escaping to infinity could form UHECR due to extremely efficient magnetic Penrose process – protons with energy E > 10 21 eV can be accelerated by supermassive black holes with M ∼ 10 10 M ⊙ immersed in magnetic field with B ∼ 10 4 Gs.


Sign in / Sign up

Export Citation Format

Share Document