scholarly journals Ringing of the Regular Black Hole with Asymptotically Minkowski Core

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 418
Author(s):  
Alexander Marcus Simpson

A Regge–Wheeler analysis is performed for a novel black hole mimicker ‘the regular black hole with asymptotically Minkowski core’, followed by an approximation of the permitted quasi-normal modes for propagating waveforms. A first-order WKB approximation is computed for spin zero and spin one perturbations of the candidate spacetime. Subsequently, numerical results analysing the respective fundamental modes are compiled for various values of the a parameter (which quantifies the distortion from Schwarzschild spacetime), and for various multipole numbers ℓ. Both electromagnetic spin one fluctuations and scalar spin zero fluctuations on the background spacetime are found to possess shorter-lived, higher-energy signals than their Schwarzschild counterparts for a specific range of interesting values of the a parameter. Comparison between these results and some analogous results for both the Bardeen and Hayward regular black holes is considered. Analysis as to what happens when one permits perturbations of the Regge–Wheeler potential itself is then conducted, first in full generality, before specialising to Schwarzschild spacetime. A general result is presented explicating the shift in quasi-normal modes under perturbation of the Regge–Wheeler potential.

2021 ◽  
Author(s):  
Thomas Berry

<p><b>The central theme of this thesis is the study and analysis of black hole mimickers. The concept of a black hole mimicker is introduced, and various mimicker spacetime models are examined within the framework of classical general relativity. The mimickers examined fall into the classes of regular black holes and traversable wormholes under spherical symmetry. The regular black holes examined can be further categorised as static spacetimes, however the traversable wormhole is allowed to have a dynamic (non-static) throat. Astrophysical observables are calculated for a recently proposed regular black hole model containing an exponential suppression of the Misner-Sharp quasi-local mass. This same regular black hole model is then used to construct a wormhole via the "cut-and-paste" technique. The resulting wormhole is then analysed within the Darmois-Israel thin-shell formalism, and a linearised stability analysis of the (dynamic) wormhole throat is undertaken. Yet another regular black hole model spacetime is proposed, extending a previous work which attempted to construct a regular black hole through a quantum "deformation" of the Schwarzschild spacetime. The resulting spacetime is again analysed within the framework of classical general relativity. </b></p><p>In addition to the study of black hole mimickers, I start with a brief overview of the theory of special relativity where a new and novel result is presented for the combination of relativistic velocities in general directions using quaternions. This is succeed by an introduction to concepts in differential geometry needed for the successive introduction to the theory of general relativity. A thorough discussion of the concept of spacetime singularities is then provided, before analysing the specific black hole mimickers discussed above.</p>


2018 ◽  
Vol 15 (02) ◽  
pp. 1850018 ◽  
Author(s):  
Piero Nicolini ◽  
Anais Smailagic ◽  
Euro Spallucci

Recently, it has been claimed by Chinaglia and Zerbini that the curvature singularity is present even in the so-called regular black hole solutions of the Einstein equations. In this brief note, we show that this criticism is devoid of any physical content.


2021 ◽  
Author(s):  
◽  
Alexander Simpson

<p>Various spacetime candidates for traversable wormholes, regular black holes, and ‘black-bounces’ are presented and thoroughly explored in the context of the gravitational theory of general relativity. All candidate spacetimes belong to the mathematically simple class of spherically symmetric geometries; the majority are static (time-independent as well as nonrotational), with a single dynamical (time-dependent) geometry explored. To the extent possible, the candidates are presented through the use of a global coordinate patch – some of the prior literature (especially concerning traversable wormholes) has often proposed coordinate systems for desirable solutions to the Einstein equations requiring a multi-patch atlas. The most interesting cases include the so-called ‘exponential metric’ – well-favoured by proponents of alternative theories of gravity but which actually has a standard classical interpretation, and the ‘black-bounce’ to traversable wormhole case – where a metric is explored which represents either a traversable wormhole or a regular black hole, depending on the value of the newly introduced scalar parameter a. This notion of ‘blackbounce’ is defined as the case where the spherical boundary of a regular black hole forces one to travel towards a one-way traversable ‘bounce’ into a future reincarnation of our own universe. The metric of interest is then explored further in the context of a time-dependent spacetime, where the line element is rephrased with a Vaidya-like time-dependence imposed on the mass of the object, and in terms of outgoing/ingoing EddingtonFinkelstein coordinates. Analysing these candidate spacetimes extends the pre-existing discussion concerning the viability of non-singular black hole solutions in the context of general relativity, as well as contributing to the dialogue on whether an arbitrarily advanced civilization would be able to construct a traversable wormhole.</p>


Universe ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Thomas Berry ◽  
Alex Simpson ◽  
Matt Visser

Classical black holes contain a singularity at their core. This has prompted various researchers to propose a multitude of modified spacetimes that mimic the physically observable characteristics of classical black holes as best as possible, but that crucially do not contain singularities at their cores. Due to recent advances in near-horizon astronomy, the ability to observationally distinguish between a classical black hole and a potential black hole mimicker is becoming increasingly feasible. Herein, we calculate some physically observable quantities for a recently proposed regular black hole with an asymptotically Minkowski core—the radius of the photon sphere and the extremal stable timelike circular orbit (ESCO). The manner in which the photon sphere and ESCO relate to the presence (or absence) of horizons is much more complex than for the Schwarzschild black hole. We find situations in which photon spheres can approach arbitrarily close to (near extremal) horizons, situations in which some photon spheres become stable, and situations in which the locations of both photon spheres and ESCOs become multi-valued, with both ISCOs (innermost stable circular orbits) and OSCOs (outermost stable circular orbits). This provides an extremely rich phenomenology of potential astrophysical interest.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 165
Author(s):  
Thomas Berry ◽  
Alex Simpson ◽  
Matt Visser

We discuss the “quantum deformed Schwarzschild spacetime”, as originally introduced by Kazakov and Solodukhin in 1993, and investigate the precise sense in which it does and does not satisfy the desiderata for being a “regular black hole”. We shall carefully distinguish (i) regularity of the metric components, (ii) regularity of the Christoffel components, and (iii) regularity of the curvature. We shall then embed the Kazakov–Solodukhin spacetime in a more general framework where these notions are clearly and cleanly separated. Finally, we analyze aspects of the classical physics of these “quantum deformed Schwarzschild spacetimes”. We shall discuss the surface gravity, the classical energy conditions, null and timelike geodesics, and the appropriate variant of the Regge–Wheeler equation.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hai Huang ◽  
Ping Liao ◽  
Juhua Chen ◽  
Yongjiu Wang

By using the partial wave method, we investigate the absorption of massless scalar wave from regular black hole. We numerically carry out the absorption cross section and find that the larger angular momentum quantum number l is, the smaller the corresponding maximum value of partial absorption cross section is. Comparing with Schwarzschild case, the absorption cross section of regular black holes is strengthened in both low and high frequency regions, and the absorption cross section oscillates around the geometric optical value in the high frequency region. Generally speaking, the scattering flux is strengthened and its scattering width becomes narrower in the forward direction. There are obvious contrast of scattering properties of different type of regular black hole.


2021 ◽  
Author(s):  
◽  
Alexander Simpson

<p>Various spacetime candidates for traversable wormholes, regular black holes, and ‘black-bounces’ are presented and thoroughly explored in the context of the gravitational theory of general relativity. All candidate spacetimes belong to the mathematically simple class of spherically symmetric geometries; the majority are static (time-independent as well as nonrotational), with a single dynamical (time-dependent) geometry explored. To the extent possible, the candidates are presented through the use of a global coordinate patch – some of the prior literature (especially concerning traversable wormholes) has often proposed coordinate systems for desirable solutions to the Einstein equations requiring a multi-patch atlas. The most interesting cases include the so-called ‘exponential metric’ – well-favoured by proponents of alternative theories of gravity but which actually has a standard classical interpretation, and the ‘black-bounce’ to traversable wormhole case – where a metric is explored which represents either a traversable wormhole or a regular black hole, depending on the value of the newly introduced scalar parameter a. This notion of ‘blackbounce’ is defined as the case where the spherical boundary of a regular black hole forces one to travel towards a one-way traversable ‘bounce’ into a future reincarnation of our own universe. The metric of interest is then explored further in the context of a time-dependent spacetime, where the line element is rephrased with a Vaidya-like time-dependence imposed on the mass of the object, and in terms of outgoing/ingoing EddingtonFinkelstein coordinates. Analysing these candidate spacetimes extends the pre-existing discussion concerning the viability of non-singular black hole solutions in the context of general relativity, as well as contributing to the dialogue on whether an arbitrarily advanced civilization would be able to construct a traversable wormhole.</p>


2021 ◽  
Author(s):  
Thomas Berry

<p><b>The central theme of this thesis is the study and analysis of black hole mimickers. The concept of a black hole mimicker is introduced, and various mimicker spacetime models are examined within the framework of classical general relativity. The mimickers examined fall into the classes of regular black holes and traversable wormholes under spherical symmetry. The regular black holes examined can be further categorised as static spacetimes, however the traversable wormhole is allowed to have a dynamic (non-static) throat. Astrophysical observables are calculated for a recently proposed regular black hole model containing an exponential suppression of the Misner-Sharp quasi-local mass. This same regular black hole model is then used to construct a wormhole via the "cut-and-paste" technique. The resulting wormhole is then analysed within the Darmois-Israel thin-shell formalism, and a linearised stability analysis of the (dynamic) wormhole throat is undertaken. Yet another regular black hole model spacetime is proposed, extending a previous work which attempted to construct a regular black hole through a quantum "deformation" of the Schwarzschild spacetime. The resulting spacetime is again analysed within the framework of classical general relativity. </b></p><p>In addition to the study of black hole mimickers, I start with a brief overview of the theory of special relativity where a new and novel result is presented for the combination of relativistic velocities in general directions using quaternions. This is succeed by an introduction to concepts in differential geometry needed for the successive introduction to the theory of general relativity. A thorough discussion of the concept of spacetime singularities is then provided, before analysing the specific black hole mimickers discussed above.</p>


2018 ◽  
Vol 33 (34) ◽  
pp. 1850197
Author(s):  
Sergei Filyukov

It is shown that the near-horizon geometry of a generic extreme regular black hole solution of Einstein gravity coupled to nonlinear electrodynamics is described by the AdS2 × S2 spacetime.


Sign in / Sign up

Export Citation Format

Share Document