scholarly journals Gravitational Lensing of Continuous Gravitational Waves

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 502
Author(s):  
Marek Biesiada ◽  
Sreekanth Harikumar

Continuous gravitational waves are analogous to monochromatic light and could therefore be used to detect wave effects such as interference or diffraction. This would be possible with strongly lensed gravitational waves. This article reviews and summarises the theory of gravitational lensing in the context of gravitational waves in two different regimes: geometric optics and wave optics, for two widely used lens models such as the point mass lens and the Singular Isothermal Sphere (SIS). Observable effects due to the wave nature of gravitational waves are discussed. As a consequence of interference, GWs produce beat patterns which might be observable with next generation detectors such as the ground based Einstein Telescope and Cosmic Explorer, or the space-borne LISA and DECIGO. This will provide us with an opportunity to estimate the properties of the lensing system and other cosmological parameters with alternative techniques. Diffractive microlensing could become a valuable method of searching for intermediate mass black holes formed in the centres of globular clusters. We also point to an interesting idea of detecting the Poisson–Arago spot proposed in the literature.

2019 ◽  
Vol 492 (1) ◽  
pp. 1127-1134 ◽  
Author(s):  
Ashish Kumar Meena ◽  
Jasjeet Singh Bagla

ABSTRACT We discuss the gravitational lensing of gravitational wave (GW) signals from coalescing binaries. We delineate the regime where wave effects are significant from the regime where geometric limit can be used. Further, we focus on the effect of microlensing and the combined effect of strong lensing and microlensing. We find that microlensing combined with strong lensing can introduce time varying phase shift in the signal and hence can lead to detectable differences in the signal observed for different images produced by strong lensing. This, coupled with the coarse localization of signal source in the sky for GW detections, can make it difficult to identify the common origin of signal corresponding to different images and use observables like time delay. In case we can reliably identify corresponding images, microlensing of individual images can be used as a tool to constrain properties of microlenses. Sources of gravitational waves can undergo microlensing due to lenses in the disc/halo of the Galaxy, or due to lenses in an intervening galaxy even in absence of strong lensing. In general the probability for this is small with one exception: extragalactic sources of GWs that lie in the galactic plane are highly likely to be microlensed. Wave effects are extremely important for such cases. In case of detections of such sources with low signal-to-noise ratio, the uncertainty of occurrence of microlensing or otherwise introduces an additional uncertainty in the parameters of the source.


2020 ◽  
Vol 494 (2) ◽  
pp. 1956-1970 ◽  
Author(s):  
Suvodip Mukherjee ◽  
Benjamin D Wandelt ◽  
Joseph Silk

ABSTRACT The cross-correlation of gravitational wave strain with upcoming galaxy surveys probes theories of gravity in a new way. This method enables testing the theory of gravity by combining the effects from both gravitational lensing of gravitational waves and the propagation of gravitational waves in space–time. We find that within 10 yr the combination of the Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory) and VIRGO (Virgo interferometer) detector networks with planned galaxy surveys should detect weak gravitational lensing of gravitational waves in the low-redshift Universe (z < 0.5). With the next-generation gravitational wave experiments such as Voyager, LISA (Laser Interferometer Space Antenna), Cosmic Explorer, and the Einstein Telescope, we can extend this test of the theory of gravity to larger redshifts by exploiting the synergies between electromagnetic wave and gravitational wave probes.


2003 ◽  
Vol 595 (2) ◽  
pp. 1039-1051 ◽  
Author(s):  
Ryuichi Takahashi ◽  
Takashi Nakamura

Author(s):  
Ayan Mitra ◽  
Jurgen Mifsud ◽  
David F Mota ◽  
David Parkinson

Abstract The Einstein Telescope and other third generation interferometric detectors of gravitational waves are projected to be operational post 2030. The cosmological signatures of gravitational waves would undoubtedly shed light on any departure from the current gravitational framework. We here confront a specific modified gravity model, the No Slip Gravity model, with forecast observations of gravitational waves. We compare the predicted constraints on the dark energy equation of state parameters $w_0^{}-w_a^{}$, between the modified gravity model and that of Einstein gravity. We show that the No Slip Gravity model mimics closely the constraints from the standard gravitational theory, and that the cosmological constraints are very similar. The use of spectroscopic redshifts, especially in the low–redshift regime, lead to significant improvements in the inferred parameter constraints. We test how well such a prospective gravitational wave dataset would function at testing such models, and find that there are significant degeneracies between the modified gravity model parameters, and the cosmological parameters that determine the distance, due to the gravitational wave dimming effect of the modified theory.


2020 ◽  
Vol 497 (1) ◽  
pp. 879-893 ◽  
Author(s):  
Weiqiang Yang ◽  
Supriya Pan ◽  
David F Mota ◽  
Minghui Du

ABSTRACT It is always interesting to investigate how well can a future experiment perform with respect to others (present or future ones). Cosmology is really an exciting field where a lot of puzzles are still unknown. In this paper, we consider a generalized dark energy (DE) scenario where anisotropic stress is present. We constrain this generalized cosmic scenario with an aim to investigate how gravitational waves standard sirens (GWSS) may constrain the anisotropic stress, which, according to the standard cosmological probes, remains unconstrained. In order to do this, we generate the luminosity distance measurements from $\mathcal {O} (10^3)$ mock GW events that match the expected sensitivity of the Einstein Telescope. Our analyses report that, first of all, GWSS can give better constraints on various cosmological parameters compared to the usual cosmological probes, but the viscous sound speed appearing due to the DE anisotropic stress is totally unconstrained even after the inclusion of GWSS.


1986 ◽  
Vol 34 (6) ◽  
pp. 1708-1718 ◽  
Author(s):  
Shuji Deguchi ◽  
William D. Watson

2018 ◽  
Vol 168 ◽  
pp. 01008 ◽  
Author(s):  
Rong-Gen Cai ◽  
Tao Yang

The gravitational waves from compact binary systems are viewed as a standard siren to probe the evolution of the universe. This paper summarizes the potential and ability to use the gravitational waves to constrain the cosmological parameters and the dark sector interaction in the Gaussian process methodology. After briefly introducing the method to reconstruct the dark sector interaction by the Gaussian process, the concept of standard sirens and the analysis of reconstructing the dark sector interaction with LISA are outlined. Furthermore, we estimate the constraint ability of the gravitational waves on cosmological parameters with ET. The numerical methods we use are Gaussian process and the Markov-Chain Monte-Carlo. Finally, we also forecast the improvements of the abilities to constrain the cosmological parameters with ET and LISA combined with the Planck.


Sign in / Sign up

Export Citation Format

Share Document