scholarly journals Multiscale Electron Microscopy for the Study of Viral Replication Organelles

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 197
Author(s):  
Georg Wolff ◽  
Montserrat Bárcena

During infection with positive-strand RNA viruses, viral RNA synthesis associates with modified intracellular membranes that form unique and captivating structures in the cytoplasm of the infected cell. These viral replication organelles (ROs) play a key role in the replicative cycle of important human pathogens like coronaviruses, enteroviruses, or flaviviruses. From their discovery to date, progress in our understanding of viral ROs has closely followed new developments in electron microscopy (EM). This review gives a chronological account of this progress and an introduction to the different EM techniques that enabled it. With an ample repertoire of imaging modalities, EM is nowadays a versatile technique that provides structural and functional information at a wide range of scales. Together with well-established approaches like electron tomography or labeling methods, we examine more recent developments, such as volume scanning electron microscopy (SEM) and in situ cryotomography, which are only beginning to be applied to the study of viral ROs. We also highlight the first cryotomography analyses of viral ROs, which have led to the discovery of macromolecular complexes that may serve as RO channels that control the export of newly-made viral RNA. These studies are key first steps towards elucidating the macromolecular complexity of viral ROs.

2018 ◽  
Vol 46 (4) ◽  
pp. 807-816 ◽  
Author(s):  
Joshua Hutchings ◽  
Giulia Zanetti

Cryo-electron tomography (CET) is uniquely suited to obtain structural information from a wide range of biological scales, integrating and bridging knowledge from molecules to cells. In particular, CET can be used to visualise molecular structures in their native environment. Depending on the experiment, a varying degree of resolutions can be achieved, with the first near-atomic molecular structures becoming recently available. The power of CET has increased significantly in the last 5 years, in parallel with improvements in cryo-EM hardware and software that have also benefited single-particle reconstruction techniques. In this review, we cover the typical CET pipeline, starting from sample preparation, to data collection and processing, and highlight in particular the recent developments that support structural biology in situ. We provide some examples that highlight the importance of structure determination of molecules embedded within their native environment, and propose future directions to improve CET performance and accessibility.


2001 ◽  
Vol 7 (S2) ◽  
pp. 766-767
Author(s):  
M. H. Ellisman

Electron tomography has proven to be an invaluable tool for studying the 3-dimensional organization of a wide range of structures, from large cellular processes down to individual macromolecular complexes. An important requirement for electron tomography of thick specimens is the need for selective staining to delineate the structure of interest from other cellular constituents. of particular usefulness in this regard is the method of fluorescence photooxidation, whereby the reactive oxygen generated by a fluorescent compound is used to oxidize diaminobenzidine into a reaction product that can then be visualized with the electron microscope. The main advantages of this method are that not only does it allow for excellent correlated light and electron microscopy, but also the relatively small size of the oxidizing agent used allows for excellent 3-D labeling with high resolution.This method has proven to be a particularly versatile technique.


2016 ◽  
Vol 22 (S3) ◽  
pp. 74-75
Author(s):  
Z. Hong Zhou ◽  
Wong H. Hui ◽  
Jiayan Zhang ◽  
Ivo Atanasov ◽  
Cristina C. Celma ◽  
...  

2016 ◽  
Vol 22 (6) ◽  
pp. 1350-1359 ◽  
Author(s):  
Xiang Li Zhong ◽  
Sibylle Schilling ◽  
Nestor J. Zaluzec ◽  
M. Grace Burke

AbstractIn recent years, an increasing number of studies utilizing in situ liquid and/or gaseous cell scanning/transmission electron microscopy (S/TEM) have been reported. Because of the difficulty in the preparation of suitable specimens, these environmental S/TEM studies have been generally limited to studies of nanoscale structured materials such as nanoparticles, nanowires, or sputtered thin films. In this paper, we present two methodologies which have been developed to facilitate the preparation of electron-transparent samples from conventional bulk metals and alloys for in situ liquid/gaseous cell S/TEM experiments. These methods take advantage of combining sequential electrochemical jet polishing followed by focused ion beam extraction techniques to create large electron-transparent areas for site-specific observation. As an example, we illustrate the application of this methodology for the preparation of in situ specimens from a cold-rolled Type 304 austenitic stainless steel sample, which was subsequently examined in both 1 atm of air as well as fully immersed in a H2O environment in the S/TEM followed by hyperspectral imaging. These preparation techniques can be successfully applied as a general procedure for a wide range of metals and alloys, and are suitable for a variety of in situ analytical S/TEM studies in both aqueous and gaseous environments.


2002 ◽  
Vol 8 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Pratibha L. Gai

We present the development of in situ wet environmental transmission electron microscopy (Wet-ETEM) for direct probing of controlled liquid–catalyst reactions at operating temperatures on the nanoscale. The first nanoscale imaging and electron diffraction of dynamic liquid hydrogenation and polymerization reactions in the manufacture of polyamides reported here opens up new opportunities for high resolution studies of a wide range of solution–solid and solution–gas–solid reactions in the chemical and biological sciences.


1990 ◽  
Vol 201 ◽  
Author(s):  
A G Cullis ◽  
D J Eaglesham ◽  
D C Jacobson ◽  
J M Poate ◽  
C R Whitehouse ◽  
...  

AbstractThe material-dependent manner in which ion damage occurs in AlAs/GaAs heteroepitaxial structures is demonstrated using conventional and high resolution transmission electron microscopy. Both 150keV and 2MeV Si+ ion implants are employed over a wide range of ion doses. Under conditions which yield rapid build-up of lattice damage in GaAs, the AlAs is found to be relatively resistant to structure breakdown. Indeed, the crystalline AlAs exerts a novel protective effect on immediately adjacent regions of the GaAs layers. For high implantation doses amorphous-crystal superlattices are formed in multilayer structures. For the highest ion doses the AlAs lattice begins to be disrupted by a characteristic, boundary-dependent, heterogeneous mechanism. These observations suggest that mobile point defects play a significant role in AlAs in situ restructuring processes.


2010 ◽  
Vol 25 (7) ◽  
pp. 1264-1271 ◽  
Author(s):  
Dalaver H. Anjum ◽  
Rebecca M. Stiger ◽  
James J. Finley ◽  
James F. Conway

We report a novel method of growing silver nanostructures by cathodic sputtering onto an ionic liquid (IL) and our visualization by transmission cryo-electron microscopy to avoid beam-induced motion of the nanoparticles. By freezing the IL suspension and controlling electron dose, we can assess properties of particle size, morphology, crystallinity, and aggregation in situ and at high detail. We observed round silver nanoparticles with a well-defined diameter of 7.0 ± 1.5 nm that are faceted with crystalline cubic structures and ˜80% of the particles have multiply twinned faults. We also applied cryo-electron tomography to investigate the structure of the nanoparticles and to directly visualize the IL wetting around them. In addition to particles, we observed nanorods that appear to have assembled from individual nanoparticles. Reexamination of the samples after 4–5 days from initial preparation showed significant changes in morphology, and potential mechanisms for this are discussed.


Inorganics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 85
Author(s):  
Maryam Golozar ◽  
Raynald Gauvin ◽  
Karim Zaghib

This work summarizes the most commonly used in situ techniques for the study of Li-ion batteries from the micro to the atomic level. In situ analysis has attracted a great deal of interest owing to its ability to provide a wide range of information about the cycling behavior of batteries from the beginning until the end of cycling. The in situ techniques that are covered are: X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Scanning Transmission Electron Microscopy (STEM). An optimized setup is required to be able to use any of these in situ techniques in battery applications. Depending on the type of data required, the available setup, and the type of battery, more than one of these techniques might be needed. This study organizes these techniques from the micro to the atomic level, and shows the types of data that can be obtained using these techniques, their advantages and their challenges, and possible strategies for overcoming these challenges.


Author(s):  
Nobuo Tanaka ◽  
Takeshi Fujita ◽  
Yoshimasa Takahashi ◽  
Jun Yamasaki ◽  
Kazuyoshi Murata ◽  
...  

A new environmental high-voltage transmission electron microscope (E-HVEM) was developed by Nagoya University in collaboration with JEOL Ltd. An open-type environmental cell was employed to enable in-situ observations of chemical reactions on catalyst particles as well as mechanical deformation in gaseous conditions. One of the reasons for success was the application of high-voltage transmission electron microscopy to environmental (in-situ) observations in the gas atmosphere because of high transmission of electrons through gas layers and thick samples. Knock-on damages to samples by high-energy electrons were carefully considered. In this paper, we describe the detailed design of the E-HVEM, recent developments and various applications. This article is part of a discussion meeting issue ‘Dynamic in situ microscopy relating structure and function'.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Swetha Vijayakrishnan ◽  
Marion McElwee ◽  
Colin Loney ◽  
Frazer Rixon ◽  
David Bhella

Abstract Cryo electron microscopy (cryo-EM), a key method for structure determination involves imaging purified material embedded in vitreous ice. Images are then computationally processed to obtain three-dimensional structures approaching atomic resolution. There is increasing interest in extending structural studies by cryo-EM into the cell, where biological structures and processes may be imaged in context. The limited penetrating power of electrons prevents imaging of thick specimens (> 500 nm) however. Cryo-sectioning methods employed to overcome this are technically challenging, subject to artefacts or involve specialised and costly equipment. Here we describe the first structure of herpesvirus capsids determined by sub-tomogram averaging from nuclei of eukaryotic cells, achieved by cryo-electron tomography (cryo-ET) of re-vitrified cell sections prepared using the Tokuyasu method. Our reconstructions confirm that the capsid associated tegument complex is present on capsids prior to nuclear egress. We demonstrate that this method is suited to both 3D structure determination and correlative light/electron microscopy, thus expanding the scope of cryogenic cellular imaging.


Sign in / Sign up

Export Citation Format

Share Document