scholarly journals The Molecular Tweezer CLR01 Inhibits Antibody-Resistant Cell-to-Cell Spread of Human Cytomegalovirus

Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1685
Author(s):  
Sina Brenner ◽  
Berenike Braun ◽  
Clarissa Read ◽  
Tatjana Weil ◽  
Paul Walther ◽  
...  

Human cytomegalovirus (HCMV) uses two major ways for virus dissemination: infection by cell-free virus and direct cell-to-cell spread. Neutralizing antibodies can efficiently inhibit infection by cell-free virus but mostly fail to prevent cell-to-cell transmission. Here, we show that the ‘molecular tweezer’ CLR01, a broad-spectrum antiviral agent, is not only highly active against infection with cell-free virus but most remarkably inhibits antibody-resistant direct cell-to-cell spread of HCMV. The inhibition of cell-to-cell spread by CLR01 was not limited to HCMV but was also shown for the alphaherpesviruses herpes simplex viruses 1 and 2 (HSV-1, -2). CLR01 is a rapid acting small molecule that inhibits HCMV entry at the attachment and penetration steps. Electron microscopy of extracellular virus particles indicated damage of the viral envelope by CLR01, which likely impairs the infectivity of virus particles. The rapid inactivation of viral particles by CLR01, the viral envelope as the main target, and the inhibition of virus entry at different stages are presumably the key to inhibition of cell-free virus infection and cell-to-cell spread by CLR01. Importance: While cell-free spread enables the human cytomegalovirus (HCMV) and other herpesviruses to transmit between hosts, direct cell-to-cell spread is thought to be more relevant for in vivo dissemination within infected tissues. Cell-to-cell spread is resistant to neutralizing antibodies, thus contributing to the maintenance of virus infection and virus dissemination in the presence of an intact immune system. Therefore, it would be therapeutically interesting to target this mode of spread in order to treat severe HCMV infections and to prevent dissemination of virus within the infected host. The molecular tweezer CLR01 exhibits broad-spectrum antiviral activity against a number of enveloped viruses and efficiently blocks antibody-resistant cell-to-cell spread of HCMV, thus representing a novel class of small molecules with promising antiviral activity.

2018 ◽  
Vol 92 (9) ◽  
pp. e00084-18 ◽  
Author(s):  
Melina Vallbracht ◽  
Sascha Rehwaldt ◽  
Barbara G. Klupp ◽  
Thomas C. Mettenleiter ◽  
Walter Fuchs

ABSTRACTMany viral envelope proteins are modified by asparagine (N)-linked glycosylation, which can influence their structure, physicochemical properties, intracellular transport, and function. Here, we systematically analyzed the functional relevance of N-linked glycans in the alphaherpesvirus pseudorabies virus (PrV) glycoprotein H (gH), which is an essential component of the conserved core herpesvirus fusion machinery. Upon gD-mediated receptor binding, the heterodimeric complex of gH and gL activates gB to mediate fusion of the viral envelope with the host cell membrane for viral entry. gH contains five potential N-linked glycosylation sites at positions 77, 162, 542, 604, and 627, which were inactivated by conservative mutations (asparagine to glutamine) singly or in combination. The mutated proteins were tested for correct expression and fusion activity. Additionally, the mutated gH genes were inserted into the PrV genome for analysis of function during virus infection. Our results demonstrate that all five sites are glycosylated. Inactivation of the PrV-specific N77 or the conserved N627 resulted in significantly reducedin vitrofusion activity, delayed penetration kinetics, and smaller virus plaques. Moreover, substitution of N627 greatly affected transport of gH in transfected cells, resulting in endoplasmic reticulum (ER) retention and reduced surface expression. In contrast, mutation of N604, which is conserved in theVaricellovirusgenus, resulted in enhancedin vitrofusion activity and viral cell-to-cell spread. These results demonstrate a role of the N-glycans in proper localization and function of PrV gH. However, even simultaneous inactivation of all five N-glycosylation sites of gH did not severely inhibit formation of infectious virus particles.IMPORTANCEHerpesvirus infection requires fusion of the viral envelope with cellular membranes, which involves the conserved fusion machinery consisting of gB and the heterodimeric gH/gL complex. The bona fide fusion protein gB depends on the presence of the gH/gL complex for activation. Viral envelope glycoproteins, such as gH, usually contain N-glycans, which can have a strong impact on their folding, transport, and functions. Here, we systematically analyzed the functional relevance of all five predicted N-linked glycosylation sites in the alphaherpesvirus pseudorabies virus (PrV) gH. Despite the fact that mutation of specific sites affected gH transport,in vitrofusion activity, and cell-to-cell spread and resulted in delayed penetration kinetics, even simultaneous inactivation of all five N-glycosylation sites of gH did not severely inhibit formation of infectious virus particles. Thus, our results demonstrate a modulatory but nonessential role of N-glycans for gH function.


Virology ◽  
2013 ◽  
Vol 444 (1-2) ◽  
pp. 140-147 ◽  
Author(s):  
Christian L. Jacob ◽  
Louie Lamorte ◽  
Eliud Sepulveda ◽  
Ivo C. Lorenz ◽  
Annick Gauthier ◽  
...  

2019 ◽  
Author(s):  
Le Zhang Day ◽  
Cora Stegmann ◽  
Eric P. Schultz ◽  
Jean-Marc Lanchy ◽  
Qin Yu ◽  
...  

ABSTRACTThe human cytomegalovirus (HCMV) glycoproteins H and L (gH/gL) can be bound by either gO, or the UL128-131 proteins to form complexes that facilitate entry and spread and the complexes formed are important targets of neutralizing antibodies. Strains of HCMV vary considerably in the levels of gH/gL/gO and gH/gL/UL128-131 and this can impact infectivity and cell tropism. In this report, we investigated how natural interstrain variation in the amino acid sequence of gO influences the biology of HCMV. Heterologous gO recombinants were constructed in which 6 of the 8 alleles or genotypes (GT) of gO were analyzed in the backgrounds of strain TR and Merlin (ME). The levels of gH/gL complexes were not affected, but there were impacts on entry, spread and neutralization by anti-gH antibodies. AD169 (AD) gO (GT1a) drastically reduced cell-free infectivity of both strains on fibroblasts and epithelial cells. PHgO(GT2a) increased cell-free infectivity of TR in both cell types, but spread in fibroblasts was impaired. In contrast, spread of ME in both cell types was enhanced by Towne (TN) gO (GT4), despite similar cell-free infectivity. TR expressing TNgO(GT4) was resistant to neutralization by anti-gH antibodies AP86 and 14-4b, whereas ADgO(GT1a) conferred resistance to 14-4b, but enhanced neutralization by AP86. Conversely, ME expressing ADgO(GT1a) was more resistant to 14-4b. These results suggest; 1) mechanistically distinct roles for gH/gL/gO in cell-free and cell-to-cell spread, 2) gO isoforms can differentially shield the virus from neutralizing antibodies, and 3) effects of gO polymorphisms are epistatically dependent on other variable loci.IMPORTANCEAdvances in HCMV population genetics have greatly outpaced understanding of the links between genetic diversity and phenotypic variation. Moreover, recombination between genotypes may shuffle variable loci into various combinations with unknown outcomes. UL74(gO) is an important determinant of HCMV infectivity, and one of the most diverse loci in the viral genome. By analyzing interstrain heterologous UL74(gO) recombinants, we show that gO diversity can have dramatic impacts on cell-free and cell-to-cell spread as well as on antibody neutralization and that the manifestation of these impacts can be subject to epistatic influences of the global genetic background. These results highlight the potential limitations of laboratory studies of HCMV biology that use single, isolated genotypes or strains.


2020 ◽  
Vol 94 (13) ◽  
Author(s):  
Eric P. Schultz ◽  
Jean-Marc Lanchy ◽  
Le Zhang Day ◽  
Qin Yu ◽  
Christopher Peterson ◽  
...  

ABSTRACT It is widely held that clinical isolates of human cytomegalovirus (HCMV) are highly cell associated, and mutations affecting the UL128-131 and RL13 loci that arise in culture lead to the appearance of a cell-free spread phenotype. The bacterial artificial chromosome (BAC) clone Merlin (ME) expresses abundant UL128-131, is RL13 impaired, and produces low infectivity virions in fibroblasts, whereas TB40/e (TB) and TR are low in UL128-131, are RL13 intact, and produce virions of much higher infectivity. Despite these differences, quantification of spread by flow cytometry revealed remarkably similar spread efficiencies in fibroblasts. In epithelial cells, ME spread more efficiently, consistent with robust UL128-131 expression. Strikingly, ME spread far better than did TB or TR in the presence of neutralizing antibodies on both cell types, indicating that ME is not simply deficient at cell-free spread but is particularly efficient at cell-to-cell spread, whereas TB and TR cell-to-cell spread is poor. Sonically disrupted ME-infected cells contained scant infectivity, suggesting that the efficient cell-to-cell spread mechanism of ME depends on features of the intact cells such as junctions or intracellular trafficking processes. Even when UL128-131 was transcriptionally repressed, cell-to-cell spread of ME was still more efficient than that of TB or TR. Moreover, RL13 expression comparably reduced both cell-free and cell-to-cell spread of all three strains, suggesting that it acts at a stage of assembly and/or egress common to both routes of spread. Thus, HCMV strains can be highly specialized for either for cell-free or cell-to-cell spread, and these phenotypes are determined by factors beyond the UL128-131 or RL13 loci. IMPORTANCE Both cell-free and cell-to-cell spread are likely important for the natural biology of HCMV. In culture, strains clearly differ in their capacity for cell-free spread as a result of differences in the quantity and infectivity of extracellular released progeny. However, it has been unclear whether “cell-associated” phenotypes are simply the result of poor cell-free spread or are indicative of particularly efficient cell-to-cell spread mechanisms. By measuring the kinetics of spread at early time points, we were able to show that HCMV strains can be highly specialized to either cell-free or cell-to-cell mechanisms, and this was not strictly linked the efficiency of cell-free spread. Our results provide a conceptual approach to evaluating intervention strategies for their ability to limit cell-free or cell-to-cell spread as independent processes.


2002 ◽  
Vol 83 (1) ◽  
pp. 209-222 ◽  
Author(s):  
Mansun Law ◽  
Ruth Hollinshead ◽  
Geoffrey L. Smith

The roles of vaccinia virus (VV) intracellular mature virus (IMV), intracellular enveloped virus (IEV), cell-associated enveloped virus (CEV) and extracellular enveloped virus (EEV) and their associated proteins in virus spread were investigated. The plaques made by VV mutants lacking individual IEV- or EEV-specific proteins (vΔA33R, vΔA34R, vΔA36R, vΔA56R, vΔB5R, vΔF12L and vΔF13L) were compared in the presence of IMV- or EEV-neutralizing antibodies (Ab). Data presented show that for long-range spread, the comet-shaped plaques of VV were caused by the unidirectional spread of EEV probably by convection currents, and for cell-to-cell spread, VV uses a combination of Ab-resistant and Ab-sensitive pathways. Actin tails play a major role in the Ab-resistant pathway, but mutants such as vΔA34R and vΔA36R that do not make actin tails still spread from cell to cell in the presence of Ab. Most strikingly, the Ab-resistant pathway was abolished when the A33R gene was deleted. This effect was not due to alterations in the efficiency of neutralization of EEV made by this mutant, nor due to a deficiency in IMV wrapping to form IEV, which was indispensable for EEV formation by vΔA33R and vΔA34R. We suggest a role for A33R in promoting Ab-resistant cell-to-cell spread of virus. The roles of the different virus forms in the VV life-cycle are discussed.


2017 ◽  
Vol 114 (23) ◽  
pp. 6104-6109 ◽  
Author(s):  
Isa Murrell ◽  
Carmen Bedford ◽  
Kristin Ladell ◽  
Kelly L. Miners ◽  
David A. Price ◽  
...  

Human cytomegalovirus (HCMV) strains that have been passaged in vitro rapidly acquire mutations that impact viral growth. These laboratory-adapted strains of HCMV generally exhibit restricted tropism, produce high levels of cell-free virus, and develop susceptibility to natural killer cells. To permit experimentation with a virus that retained a clinically relevant phenotype, we reconstructed a wild-type (WT) HCMV genome using bacterial artificial chromosome technology. Like clinical virus, this genome proved to be unstable in cell culture; however, propagation of intact virus was achieved by placing the RL13 and UL128 genes under conditional expression. In this study, we show that WT-HCMV produces extremely low titers of cell-free virus but can efficiently infect fibroblasts, epithelial, monocyte-derived dendritic, and Langerhans cells via direct cell–cell transmission. This process of cell–cell transfer required the UL128 locus, but not the RL13 gene, and was significantly less vulnerable to the disruptive effects of IFN, cellular restriction factors, and neutralizing antibodies compared with cell-free entry. Resistance to neutralizing antibodies was dependent on high-level expression of the pentameric gH/gL/gpUL128–131A complex, a feature of WT but not passaged strains of HCMV.


2020 ◽  
Vol 94 (8) ◽  
Author(s):  
Le Zhang Day ◽  
Cora Stegmann ◽  
Eric P. Schultz ◽  
Jean-Marc Lanchy ◽  
Qin Yu ◽  
...  

ABSTRACT Human cytomegalovirus (HCMV) glycoproteins H and L (gH/gL) can be bound by either gO or the UL128 to UL131 proteins (referred to here as UL128-131) to form complexes that facilitate entry and spread, and the complexes formed are important targets of neutralizing antibodies. Strains of HCMV vary considerably in the levels of gH/gL/gO and gH/gL/UL128-131, and this can impact infectivity and cell tropism. In this study, we investigated how natural interstrain variation in the amino acid sequence of gO influences the biology of HCMV. Heterologous gO recombinants were constructed in which 6 of the 8 alleles or genotypes (GT) of gO were analyzed in the backgrounds of strains TR and Merlin (ME). The levels of gH/gL complexes were not affected, but there were impacts on entry, spread, and neutralization by anti-gH antibodies. AD169 (AD) gO (GT1a) [referred to here as ADgO(GT1a)] drastically reduced cell-free infectivity of both strains on fibroblasts and epithelial cells. PHgO(GT2a) increased cell-free infectivity of TR in both cell types, but spread in fibroblasts was impaired. In contrast, spread of ME in both cell types was enhanced by Towne (TN) gO (GT4), despite similar cell-free infectivity. TR expressing TNgO(GT4) was resistant to neutralization by anti-gH antibodies AP86 and 14-4b, whereas ADgO(GT1a) conferred resistance to 14-4b but enhanced neutralization by AP86. Conversely, ME expressing ADgO(GT1a) was more resistant to 14-4b. These results suggest that (i) there are mechanistically distinct roles for gH/gL/gO in cell-free and cell-to-cell spread, (ii) gO isoforms can differentially shield the virus from neutralizing antibodies, and (iii) effects of gO polymorphisms are epistatically dependent on other variable loci. IMPORTANCE Advances in HCMV population genetics have greatly outpaced understanding of the links between genetic diversity and phenotypic variation. Moreover, recombination between genotypes may shuffle variable loci into various combinations with unknown outcomes. UL74(gO) is an important determinant of HCMV infectivity and one of the most diverse loci in the viral genome. By analyzing interstrain heterologous UL74(gO) recombinants, we showed that gO diversity can have dramatic impacts on cell-free and cell-to-cell spread as well as on antibody neutralization and that the manifestation of these impacts can be subject to epistatic influences of the global genetic background. These results highlight the potential limitations of laboratory studies of HCMV biology that use single, isolated genotypes or strains.


2005 ◽  
Vol 79 (12) ◽  
pp. 7827-7837 ◽  
Author(s):  
Eric R. Kinzler ◽  
Teresa Compton

ABSTRACT Human cytomegalovirus (CMV) infection is dependent on the functions of structural glycoproteins at multiple stages of the viral life cycle. These proteins mediate the initial attachment and fusion events that occur between the viral envelope and a host cell membrane, as well as virion-independent cell-cell spread of the infection. Here we have utilized a cell-based fusion assay to identify the fusogenic glycoproteins of CMV. To deliver the glycoprotein genes to various cell lines, we constructed recombinant retroviruses encoding gB, gH, gL, and gO. Cells expressing individual CMV glycoproteins did not form multinucleated syncytia. Conversely, cells expressing gH/gL showed pronounced syncytium formation, although expression of gH or gL alone had no effect. Anti-gH neutralizing antibodies prevented syncytium formation. Coexpression of gB and/or gO with gH/gL did not yield detectably increased numbers of syncytia. For verification, these results were recapitulated in several cell lines. Additionally, we found that fusion was cell line dependent, as nonimmortalized fibroblast strains did not fuse under any conditions. Thus, the CMV gH/gL complex has inherent fusogenic activity that can be measured in certain cell lines; however, fusion in fibroblast strains may involve a more complex mechanism involving additional viral and/or cellular factors.


Author(s):  
D.C. Hixson ◽  
J.C. Chan ◽  
J.M. Bowen ◽  
E.F. Walborg

Several years ago Karasaki (1) reported the production of type C virus particles by Novikoff ascites hepatocarcinoma cells. More recently, Weinstein (2) has reported the presence of type C virus particles in cell cultures derived from transplantable and primary hepatocellular carcinomas. To date, the biological function of these virus and their significance in chemically induced hepatocarcinogenesis are unknown. The present studies were initiated to determine a possible role for type C virus particles in chemically induced hepatocarcinogenesis. This communication describes results of studies on the biological and surface properties of type C virus associated with Novikoff hepatocarcinoma cells.Ecotropic and xenotropic murine leukemia virus (MuLV) activity in ascitic fluid of Novikoff tumor-bearing rats was assayed in murine sarcoma virus transformed S+L- mouse cells and S+L- mink cells, respectively. The presence of sarcoma virus activity was assayed in non-virus-producing normal rat kidney (NRK) cells. Ferritin conjugates of concanavalin A (Fer-Con wheat germ agglutinin (Fer-WGA), and Ricinus communis agglutinins I and II (Fer-RCAI and Fer-RCAII) were used to probe the structure and topography of saccharide determinants present on the viral envelope.


Sign in / Sign up

Export Citation Format

Share Document