scholarly journals Spatiotemporal Associations and Molecular Evolution of Highly Pathogenic Avian Influenza A H7N9 Virus in China from 2017 to 2021

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2524
Author(s):  
Dongchang He ◽  
Min Gu ◽  
Xiyue Wang ◽  
Xiaoquan Wang ◽  
Gairu Li ◽  
...  

Highly pathogenic (HP) H7N9 avian influenza virus (AIV) emerged in China in 2016. HP H7N9 AIV caused at least 33 human infections and has been circulating in poultry farms continuously since wave 5. The genetic divergence, geographic patterns, and hemagglutinin adaptive and parallel molecular evolution of HP H7N9 AIV in China since 2017 are still unclear. Here, 10 new strains of HP H7N9 AIVs from October 2019 to April 2021 were sequenced. We found that HP H7N9 was primarily circulating in Northern China, particularly in the provinces surrounding the Bohai Sea (Liaoning, Hebei, and Shandong) since wave 6. Of note, HP H7N9 AIV phylogenies exhibit a geographical structure compatible with high levels of local transmission after unidirectional rapid geographical expansion towards the north of China in 2017. In addition, we showed that two major subclades were continually expanding with the viral population size undergoing a sharp increase after 2018 with an obvious seasonal tendency. Notably, the hemagglutinin gene showed signs of parallel evolution and positive selection. Our research sheds light on the current epidemiology, evolution, and diversity of HP H7N9 AIV that can help prevent and control the spreading of HP H7N9 AIV.

2018 ◽  
Author(s):  
Marina Escalera-Zamudio ◽  
Michael Golden ◽  
Bernardo Gutiérrez ◽  
Julien Thézé ◽  
Jeremy Russell Keown ◽  
...  

ABSTRACTParallel molecular evolution and adaptation are important phenomena commonly observed in viruses. Here we exploit parallel molecular evolution to understand virulence evolution in avian influenza viruses (AIV). Highly-pathogenic AIVs independently evolve from low-pathogenic ancestors via acquisition of a polybasic cleavage sites (pCS). Why some AIV lineages but not others evolve in this way is unknown. We hypothesise that the parallel emergence of highly-pathogenic AIV may be facilitated by permissive or compensatory mutations occurring across the AIV genome. We combined phylogenetic, statistical and structural approaches to discover parallel mutations in AIV genomes associated with the highly-pathogenic phenotype. Parallel mutations were screened using a new statistical test of mutation-phenotype association and further evaluated in the contexts of positive selection and protein function. The mutational panel we present reveals new links between virulence evolution and other viral traits and raises the possibility of predicting aspects of AIV evolution.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marina Escalera-Zamudio ◽  
Michael Golden ◽  
Bernardo Gutiérrez ◽  
Julien Thézé ◽  
Jeremy Russell Keown ◽  
...  

AbstractParallel molecular evolution and adaptation are important phenomena commonly observed in viruses. Here, we exploit parallel molecular evolution to understand virulence evolution in avian influenza viruses (AIV). Highly-pathogenic AIVs evolve independently from low-pathogenic ancestors via acquisition of polybasic cleavage sites. Why some AIV lineages but not others evolve in this way is unknown. We hypothesise that the parallel emergence of highly-pathogenic AIV may be facilitated by permissive or compensatory mutations occurring across the viral genome. We combine phylogenetic, statistical and structural approaches to discover parallel mutations in AIV genomes associated with the highly-pathogenic phenotype. Parallel mutations were screened using a statistical test of mutation-phenotype association and further evaluated in the contexts of positive selection and protein structure. Our resulting mutational panel may help to reveal new links between virulence evolution and other traits, and raises the possibility of predicting aspects of AIV evolution.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marina Escalera-Zamudio ◽  
Michael Golden ◽  
Bernardo Gutiérrez ◽  
Julien Thézé ◽  
Jeremy Russell Keown ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-20006-5


2017 ◽  
Vol 65 (3) ◽  
pp. 383-388 ◽  
Author(s):  
Hui Jiang ◽  
Peng Wu ◽  
Timothy M. Uyeki ◽  
Jianfeng He ◽  
Zhihong Deng ◽  
...  

Immunotherapy ◽  
2014 ◽  
Vol 6 (6) ◽  
pp. 699-708 ◽  
Author(s):  
Cécile Hélène Herbreteau ◽  
Frédéric Jacquot ◽  
Sareth Rith ◽  
Laurent Vacher ◽  
Ludovic Nguyen ◽  
...  

2017 ◽  
Author(s):  
Jean Artois ◽  
Xiling Wang ◽  
Hui Jiang ◽  
Ying Qin ◽  
Morgan Pearcy ◽  
...  

AbstractThe 5th epidemic wave in 2016-2017 of avian influenza A(H7N9) virus in China caused more human cases than any previous waves but the factors that may explain the recent range expansion and surge in incidence remain unknown. We investigated the effect of anthropogenic, poultry and wetland information and of market closures on all epidemic waves (1-5). Poultry predictor variables recently became much more important than before, supporting the assumption of much wider H7N9 transmission in the chicken reservoir, that could be linked to increases in pathogenicity. We show that the future range expansion of H7N9 to northern China may translate into a higher risk of coinciding peaks with those of seasonal influenza, leading to a higher risk of reassortments. Live-poultry market closures are showed to be effective in reducing the local incidence rates of H7N9 human cases, but should be paired with other prevention and control measures to prevent transmission.


2019 ◽  
Vol 220 (8) ◽  
pp. 1276-1280 ◽  
Author(s):  
Weimin Zhong ◽  
Min Z Levine

Abstract Human infections caused by avian influenza A(H7N9) viruses have raised concerns of a pandemic. The capability of the current stockpiled A(H7N9) vaccines to induce cross-protective, nonneutralizing functional antibodies against antigenically drifted A(H7N9) viruses has not been evaluated before. Here we show that vaccination with either MF59- or AS03-adjuvanted inactivated A(H7N9) vaccines elicited robust, cross-reactive antibody-dependent cell-mediated cytotoxicity–mediating and neuraminidase-inhibiting functional antibodies against the antigenically drifted A(H7N9) viruses that emerged recently during the fifth-wave outbreak in China, including a highly pathogenic A(H7N9) human isolate. Such cross-reactive humoral immunity may provide vital first-line defense against fatal outcomes in case of an A(H7N9) pandemic.


2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Diep T. Nguyen ◽  
Yunho Jang ◽  
Tho D. Nguyen ◽  
Joyce Jones ◽  
Samuel S. Shepard ◽  
...  

ABSTRACT Whole-genome sequences of representative highly pathogenic avian influenza A(H5) viruses from Vietnam were generated, comprising samples from poultry outbreaks and active market surveillance collected from January 2012 to August 2015. Six hemagglutinin gene clades were characterized. Clade 1.1.2 was predominant in southern Mekong provinces throughout 2012 and 2013 but gradually disappeared and was not detected after April 2014. Clade 2.3.2.1c viruses spread rapidly during 2012 and were detected in the south and center of the country. A number of clade 1.1.2 and 2.3.2.1c interclade reassortant viruses were detected with different combinations of internal genes derived from 2.3.2.1a and 2.3.2.1b viruses, indicating extensive cocirculation. Although reassortment generated genetic diversity at the genotype level, there was relatively little genetic drift within the individual gene segments, suggesting genetic stasis over recent years. Antigenically, clade 1.1.2, 2.3.2.1a, 2.3.2.1b, and 2.3.2.1c viruses remained related to earlier viruses and WHO-recommended prepandemic vaccine strains representing these clades. Clade 7.2 viruses, although detected in only low numbers, were the exception, as indicated by introduction of a genetically and antigenically diverse strain in 2013. Clade 2.3.4.4 viruses (H5N1 and H5N6) were likely introduced in April 2014 and appeared to gain dominance across northern and central regions. Antigenic analyses of clade 2.3.4.4 viruses compared to existing clade 2.3.4 candidate vaccine viruses (CVV) indicated the need for an updated vaccine virus. A/Sichuan/26221/2014 (H5N6) virus was developed, and ferret antisera generated against this virus were demonstrated to inhibit some but not all clade 2.3.4.4 viruses, suggesting consideration of alternative clade 2.3.4.4 CVVs. IMPORTANCE Highly pathogenic avian influenza (HPAI) A(H5) viruses have circulated continuously in Vietnam since 2003, resulting in hundreds of poultry outbreaks and sporadic human infections. Despite a significant reduction in the number of human infections in recent years, poultry outbreaks continue to occur and the virus continues to diversify. Vaccination of poultry has been used as a means to control the spread and impact of the virus, but due to the diversity and changing distribution of antigenically distinct viruses, the utility of vaccines in the face of mismatched circulating strains remains questionable. This study assessed the putative amino acid changes in viruses leading to antigenic variability, underscoring the complexity of vaccine selection for both veterinary and public health purposes. Given the overlapping geographic distributions of multiple, antigenically distinct clades of HPAI A(H5) viruses in Vietnam, the vaccine efficacy of bivalent poultry vaccine formulations should be tested in the future.


Sign in / Sign up

Export Citation Format

Share Document