scholarly journals Exploiting Pan Influenza A and Pan Influenza B Pseudotype Libraries for Efficient Vaccine Antigen Selection

Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 741
Author(s):  
Joanne Marie M. Del Rosario ◽  
Kelly A. S. da Costa ◽  
Benedikt Asbach ◽  
Francesca Ferrara ◽  
Matteo Ferrari ◽  
...  

We developed an influenza hemagglutinin (HA) pseudotype library encompassing Influenza A subtypes HA1-18 and Influenza B subtypes (both lineages) to be employed in influenza pseudotype microneutralization (pMN) assays. The pMN is highly sensitive and specific for detecting virus-specific neutralizing antibodies against influenza viruses and can be used to assess antibody functionality in vitro. Here we show the production of these viral HA pseudotypes and their employment as substitutes for wildtype viruses in influenza neutralization assays. We demonstrate their utility in detecting serum responses to vaccination with the ability to evaluate cross-subtype neutralizing responses elicited by specific vaccinating antigens. Our findings may inform further preclinical studies involving immunization dosing regimens in mice and may help in the creation and selection of better antigens for vaccine design. These HA pseudotypes can be harnessed to meet strategic objectives that contribute to the strengthening of global influenza surveillance, expansion of seasonal influenza prevention and control policies, and strengthening pandemic preparedness and response.

2021 ◽  
Author(s):  
Joanne M Del Rosario ◽  
Kelly da Costa ◽  
Benedikt Asbach ◽  
Francesca Ferrara ◽  
Matteo Ferrari ◽  
...  

We have developed an influenza hemagglutinin (HA) pseudotype library encompassing Influenza A subtypes HA1-18, and Influenza B subtypes (both lineages) to be employed in influenza pseudotype microneutralization (pMN) assays. The pMN is highly sensitive and specific for de-tecting virus-specific neutralizing antibodies against influenza viruses and can be used to assess antibody functionality in vitro. Here we show the production of these viral HA pseudotypes and their employment as substitutes for wildtype viruses in influenza serological and neutralization assays. We demonstrate its utility in detecting serum response to vaccination with the ability to evaluate cross-subtype neutralizing responses elicited by specific vaccinating antigens. Our findings may inform further pre-clinical studies involving immunization dosing regimens in mice and may help in the creation and selection of better antigens for vaccine design. These HA pseudotypes can be harnessed to meet strategic objectives that contribute to the strengthening of global influenza surveillance, expansion of seasonal influenza prevention and control policies, and strengthening pandemic preparedness and response.


1999 ◽  
Vol 44 (suppl_2) ◽  
pp. 3-9 ◽  
Author(s):  
Maria C. Zambon

Abstract Influenza A, B and C all have a segmented genome, although only certain influenza A subtypes and influenza B cause severe disease in humans. The two major proteins of influenza are the surface glycoproteins—haemagglutinin (HA) and neuraminidase (NA). HA is the major antigen for neutralizing antibodies and is involved in the binding of virus particles to receptors on host cells. Pandemics are a result of novel virus subtypes of influenza A, created by reassortment of the segmented genome (antigenic shift), whereas annual epidemics are a result of evolution of the surface antigens of influenza A and B virus (antigenic drift). The rapid evolution of influenza viruses highlights the importance of surveillance in identifying novel circulating strains. Infectivity of influenza depends on the cleavage of HA by specific host proteases, whereas NA is involved in the release of progeny virions from the cell surface and prevents clumping of newly formed virus. In birds, the natural hosts of influenza, the virus causes gastrointestinal infection and is transmitted via the faeco-oral route. Virulent avian influenza strains, which cause systemic disease, have an HA that is cleaved by proteases present in all cells of the body, rather than by proteases restricted to the intestinal tract. In mammals, replication of influenza subtypes appears restricted to respiratory epithelial cells. Most symptoms and complications, therefore, involve the respiratory tract. However, systemic complications are sometimes observed and other viral genes besides the HA, including the NA, may be involved in determination of virulence of influenza strains in mammals.


2014 ◽  
Vol 9 (5) ◽  
pp. 842-847
Author(s):  
Reiko Saito ◽  
◽  
Yadanar Kyaw ◽  
Yi Yi Myint ◽  
Clyde Dapat ◽  
...  

The epidemiological study of influenza in Southeast Asia is limited. We surveyed influenza in Myanmar from 2007 to 2013. Nasopharyngeal swabs were collected from patients in the two cities of Yangon and Nay Pyi Taw. Samples were screened using rapid influenza diagnostic kits and identified by virus isolation. Isolates were characterized by cyclingprobe-based real-time PCR, drug susceptibility assay, and sequencing. Samples collected numbered 5,173, from which 1,686 influenza viruses were isolated during the seven-year study period. Of these, 187 strains were of seasonal influenza A(H1N1), 274 of influenza A(H1N1)pdm09, 791 of influenza A(H3N2), and 434 of influenza B. Interestingly, two zanamivir and amantadine-resistant strains each were detected in 2007 and 2008. These rare dual-resistant strains had a Q136K mutation in the NA protein and S31N substitution in the M2 protein. Our collaboration raised the influenza surveillance laboratory capacity in Myanmar and led Yangon’s National Health Laboratory – one of the nation’s leading research institutes – to being designated a National Influenza Center by the World Health Organization.


2009 ◽  
Vol 14 (32) ◽  
Author(s):  
H Uphoff ◽  
S Geis ◽  
A Grüber ◽  
A M Hauri

For the next influenza season (winter 2009-10) the relative contributions to virus circulation and influenza-associated morbidity of the seasonal influenza viruses A(H3N2), A(H1N1) and B, and the new influenza A(H1N1)v are still unknown. We estimated the chances of seasonal influenza to circulate during the upcoming season using data of the German influenza sentinel scheme from 1992 to 2009. We calculated type and subtype-specific indices for past exposure and the corresponding morbidity indices for each season. For the upcoming season 2009-10 our model suggests that it is unlikely that influenza A(H3N2) will circulate with more than a low intensity, seasonal A(H1N1) with more than a low to moderate intensity, and influenza B with more than a low to median intensity. The probability of a competitive circulation of seasonal influenza A with the new A(H1N1)v is low, increasing the chance for the latter to dominate the next influenza season in Germany.


Author(s):  
Merryn Roe ◽  
Matthew Kaye ◽  
Pina Iannello ◽  
Hilda Lau ◽  
Iwona Buettner ◽  
...  

As part of its role in the World Health Organization’s (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a record total of 5866 human influenza positive samples during 2017. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties and were propagated in qualified cells and hens’ eggs for use as potential seasonal influenza vaccine virus candidates. In 2017, influenza A(H3) viruses predominated over influenza A(H1)pdm09 and B viruses, accounting for a total of 54% of all viruses analysed. The majority of A(H1)pdm09, A(H3) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the Southern Hemisphere in 2017. However, phylogenetic analysis indicated that the majority of circulating A(H3) viruses had undergone genetic drift relative to the WHO recommended vaccine strain for 2017. Of 3733 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, only two A(H1)pdm09 viruses and one A(H3) virus showed highly reduced inhibition by oseltamivir, while just one A(H1)pdm09 virus showed highly reduced inhibition by zanamivir.


2018 ◽  
Author(s):  
Kizzmekia S Corbett ◽  
Syed M Moin ◽  
Hadi M Yassine ◽  
Alberto Cagigi ◽  
Masaru Kanekiyo ◽  
...  

Influenza vaccines targeting the highly-conserved stem of the hemagglutinin (HA) surface glycoprotein have the potential to protect against pandemic and drifted seasonal influenza viruses not covered by current vaccines. While HA stem-based immunogens derived from group 1 influenza A have been shown to induce intra-group heterosubtypic protection, HA stem-specific antibody lineages originating from group 2 may be more likely to possess broad cross-group reactivity. We report the structure-guided development of mammalian cell-expressed candidate vaccine immunogens based on influenza A group 2 H3 and H7 HA stem trimers displayed on self-assembling ferritin nanoparticles using an iterative, multipronged approach involving helix stabilization, loop optimization, disulfide bond addition, and side chain repacking. These immunogens were thermostable, formed uniform and symmetric nanoparticles, were recognized by cross-group-reactive broadly neutralizing antibodies (bNAbs) with nanomolar affinity, and elicited protective, homosubtypic antibodies in mice. Importantly, several immunogens were able to activate B cells expressing inferred unmutated common ancestor (UCA) versions of cross-group-reactive human bNAbs from two multi-donor classes, suggesting they could initiate elicitation of these bNAbs in humans.


2020 ◽  
Vol 44 ◽  
Author(s):  
Olivia H Price ◽  
Natalie Spirason ◽  
Cleve Rynehart ◽  
Sook Kwan Brown ◽  
Angela Todd ◽  
...  

As part of its role in the World Health Organization’s (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a total of 3993 human influenza-positive samples during 2018. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or hens’ eggs for use as potential seasonal influenza vaccine virus candidates. In 2018, influenza A(H1)pdm09 viruses predominated over influenza A(H3) and B viruses, accounting for a total of 53% of all viruses analysed. The majority of A(H1)pdm09, A(H3) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO-recommended vaccine strains for the Southern Hemisphere in 2018. However, phylogenetic analysis indicated that a significant proportion of circulating A(H3) viruses had undergone genetic drift relative to the WHO-recommended vaccine strain for 2018. Of 2864 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, three A(H1)pdm09 viruses showed highly reduced inhibition by oseltamivir, while one B/Victoria virus showed highly reduced inhibition by both oseltamivir and zanamivir.


2011 ◽  
Vol 16 (7) ◽  
Author(s):  
I Huber ◽  
H Campe ◽  
D Sebah ◽  
C Hartberger ◽  
R Konrad ◽  
...  

For surveillance purposes real-time PCR assays for influenza viruses had to be adapted to the pandemic influenza A(H1N1)2009 strain. We combined published primers and probes for influenza A, influenza B and an internal amplification control with a detection system for influenza A(H1N1)2009 to set up a rapid, reliable, simple and cost-effective high-throughput multiplex one-step real-time RT-PCR. The workflow also includes automated sample preparation for high-throughput screening. The lower limit of detection of the multiplex assay was 3.5x102 RNA copies per PCR reaction. The diagnostic sensitivity of the multiplex assay was 87.7%, but increased to 99.4% for influenza-positive samples yielding Ct values of less than 34 cycles in the respective diagnostic assay. High specificity was confirmed by sequencing and correct detection of 15 reference samples from two quality assurance studies. The multiplex PCR was introduced for surveillance of samples from a network of general practitioners and paediatricians in Bavaria, Germany during the influenza pandemic of 2009. Comparison with surveillance data from reported cases proved the reliability of the multiplex assay for influenza surveillance programmes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eun-Jung Song ◽  
Erica Españo ◽  
Sang-Mu Shim ◽  
Jeong-Hyun Nam ◽  
Jiyeon Kim ◽  
...  

AbstractInfluenza viruses cause significant morbidity and mortality worldwide. Long-term or frequent use of approved anti-influenza agents has resulted in drug-resistant strains, thereby necessitating the discovery of new drugs. In this study, we found aprotinin, a serine protease inhibitor, as an anti-influenza candidate through screening of compound libraries. Aprotinin has been previously reported to show inhibitory effects on a few influenza A virus (IAV) subtypes (e.g., seasonal H1N1 and H3N2). However, because there were no reports of its inhibitory effects on the other types of influenza viruses, we investigated the inhibitory effects of aprotinin in vitro on a wide range of influenza viruses, including avian and oseltamivir-resistant influenza virus strains. Our cell-based assay showed that aprotinin had inhibitory effects on seasonal human IAVs (H1N1 and H3N2 subtypes), avian IAVs (H5N2, H6N5, and H9N2 subtypes), an oseltamivir-resistant IAV, and a currently circulating influenza B virus. We have also confirmed its activity in mice infected with a lethal dose of influenza virus, showing a significant increase in survival rate. Our findings suggest that aprotinin has the capacity to inhibit a wide range of influenza virus subtypes and should be considered for development as a therapeutic agent against influenza.


2019 ◽  
Vol 29 (Supplement_4) ◽  
Author(s):  
F Bashir ◽  
K Fawad Khan ◽  
S Zafar Qureshi ◽  
F Khaudaidad ◽  
R Sonia

Abstract Background A country-wide lab-based surveillance system for ILI and Severe Acute Respiratory Illness (SARI) with weekly sampling and reporting was established in 2008.This system was necessary for early detection of emerging novel influenza subtypes and timely response for influenza prevention and control. Objectives To assess the trends of Influenza-like-Illness(ILI) and to monitor the predominant circulating strains of influenza viruses through Lab based sentinel surveillance. Methods A cross-sectional study was conducted based on ten years (2007-2017) influenza surveillance data obtained from National Influenza Central Laboratory Pakistan (NICLP) from January to March 2018.Study was done from the data records and samples of suspected ILI patients and SARI patients received from all seven sentinel sites. An ILI case was defined as sudden onset of fever of ≥ 38 C° and cough, with onset within last 10 days, while patients with sudden onset of fever (>38 °C), cough/sore throat requiring hospital admission within 7 days were termed as SARI. Samples were tested at NICLP for confirmation of virus, typing and subtyping by RT-PCR. Results A total of 15885 samples were analyzed during ten years period, out of which 3475(21.9%) were found positive for influenza virus. Among positive samples 26(0.75%) were Influenza-A (H1N1), 550(38%) were A/H3N1,550(15.9%) were A/H3N1,1587(45.7%) were A/H1N1 pdm09and 1312(37.8%) were influenza B. Males were predominant(54%).Influenza Maximum cases were reported from age group 01->12 years(66%).Virus circulation was detected throughout the year along with few cases of seasonal A/H1N1 virus during late winter(January February) and spring(March). Influenza A/H3N2 virus circulation was mainly observed during summer months (August-October). Conclusions The findings of this study emphasize the need for continuous and comprehensive influenza surveillance to predict seasonal trends for vaccine development and to further fortify pandemic preparedness. Key messages The need for continuous and comprehensive influenza surveillance. Public health importance by pandemic preparedness.


Sign in / Sign up

Export Citation Format

Share Document