scholarly journals Correlation of Short Pitch Rail Corrugation with Railway Wheel-Track Resonance at Low Frequencies of Excitation

Vibration ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 491-520
Author(s):  
Bingo Masiza Balekwa ◽  
Daramy Vandi Von Kallon

As much as there has been a significant increase in the development of railway systems in recent years, one of the significant drawbacks on this mode of transport is ground-borne vibrations and noise emanating from vehicle-track interaction in service. This greatly affects the ecology and physical surroundings of the railway track. Experimental tests and Finite Element modal and complex eigenvalue analysis are conducted to investigate the dynamics of a traction wheelset and rail track. This is done to establish the correlation between the short pitch rail corrugation in the Belfast to Steelpoort railway line, in the Limpopo Province of South Africa, with railway wheel-tract resonance at low frequencies of excitation. A 3D Finite Element Method (FEM) and complex eigenvalue analysis are used to validate the resonance modes of the wheelset and rail track obtained through experimental modal analysis. Mode shapes are determined for natural frequencies that match the excitation frequency induced by short pitch rail corrugation. The results show that based on average train speeds around track curves, the excitation frequency induced by corrugation matches (quite reasonably) natural frequencies of the wheelset. Whilst the wheelset FEM results are in better agreement, they rather prove the correlation to occur at 100 Hz. In a previous study by the authors, at the average speeds per track curve, the corrugation excitation frequency was found to be 108 Hz. The current study goes further by investigating natural frequencies of rail tracks. Moreover, mode shapes of a traction wheelset and rail tracks are also investigated, and the results are presented herein.

2007 ◽  
Vol 35 (3) ◽  
pp. 165-182 ◽  
Author(s):  
Maik Brinkmeier ◽  
Udo Nackenhorst ◽  
Heiner Volk

Abstract The sound radiating from rolling tires is the most important source of traffic noise in urban regions. In this contribution a detailed finite element approach for the dynamics of tire/road systems is presented with emphasis on rolling noise prediction. The analysis is split into sequential steps, namely, the nonlinear analysis of the stationary rolling problem within an arbitrary Lagrangian Eulerian framework, and a subsequent analysis of the transient dynamic response due to the excitation caused by road surface roughness. Here, a modal superposition approach is employed using complex eigenvalue analysis. Finally, the sound radiation analysis of the rolling tire/road system is performed.


1996 ◽  
Vol 118 (1) ◽  
pp. 151-153 ◽  
Author(s):  
J. M. Vance ◽  
J. E. Bernard

Our overall goal is to develop software that facilitates the interactive participation of the designer in the optimization process. We are focusing this research on problems which use finite element solutions as part of the objective function. One challenge to implementing interactive participation in these types of problems is the high computational burden of computing a finite element solution for each design change. The research presented here focuses on a unique method to develop fast approximations for natural frequencies and mode shapes which can be used to avoid the time-consuming re-solution process and which will facilitate interactive design for systems with even large design changes.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750023 ◽  
Author(s):  
Xia-Chun Chen ◽  
Zhen-Hu Li ◽  
Francis T. K. Au ◽  
Rui-Juan Jiang

Prestressed concrete bridges with corrugated steel webs have emerged as a new form of steel-concrete composite bridges with remarkable advantages compared with the traditional ones. However, the assumption that plane sections remain plane may no longer be valid for such bridges due to the different behavior of the constituents. The sandwich beam theory is extended to predict the flexural vibration behavior of this type of bridges considering the presence of diaphragms, external prestressing tendons and interaction between the web shear deformation and flange local bending. To this end, a [Formula: see text] beam finite element is formulated. The proposed theory and finite element model are verified both numerically and experimentally. A comparison between the analyses based on the sandwich beam model and on the classical Euler–Bernoulli and Timoshenko models reveals the following findings. First of all, the extended sandwich beam model is applicable to the flexural vibration analysis of the bridges considered. By letting [Formula: see text] denote the square root of the ratio of equivalent shear rigidity to the flange local flexural rigidity, and L the span length, the combined parameter [Formula: see text] appears to be more suitable for considering the diaphragm effect and the interaction between the shear deformation and flange local bending. The diaphragms have significant effect on the flexural natural frequencies and mode shapes only when the [Formula: see text] value of the bridge falls below a certain limit. For a bridge with an [Formula: see text] value over a certain limit, the flexural natural frequencies and mode shapes obtained from the sandwich beam model and the classical Euler–Bernoulli and Timoshenko models tend to be the same. In such cases, either of the classical beam theories may be used.


2011 ◽  
Vol 2-3 ◽  
pp. 1018-1020
Author(s):  
De Chen Zhang ◽  
Yan Ping Sun

Finite element method and structural mechanics method are used to study the blast furnace shell modal analysis and the natural frequencies and mode shapes have been calculated. The two methods were compared and validated , and the results provide a theoretical foundation for the anti-vibration capabilities design of blast furnace shell in the future .


Author(s):  
Adam Koscso ◽  
Guido Dhondt ◽  
E. P. Petrov

A new method has been developed for sensitivity calculations of modal characteristics of bladed disks made of anisotropic materials. The method allows the determination of the sensitivity of the natural frequencies and mode shapes of mistuned bladed disks with respect to anisotropy angles that define the crystal orientation of the monocrystalline blades using full-scale finite element models. An enhanced method is proposed to provide high accuracy for the sensitivity analysis of mode shapes. An approach has also been developed for transforming the modal sensitivities to coordinate systems used in industry for description of the blade anisotropy orientations. The capabilities of the developed methods are demonstrated on examples of a single blade and a mistuned realistic bladed disk finite element models. The modal sensitivity of mistuned bladed disks to anisotropic material orientation is thoroughly studied.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Lijun Zhang ◽  
Yongchao Dong ◽  
Dejian Meng ◽  
Wenbo Li

In recent years, the problem of automotive brake squeal during steering braking has attracted attention. Under the conditions of squealing, the loading of sprung mass is transferred, and lateral force is generated on the tire, resulting in stress and deformation of the suspension system. To predict the steering brake squeal propensity and explore its mechanism, we established a hybrid model of multibody dynamics and finite element methods to transfer the displacement values of each suspension connection point between two models. We successfully predicted the occurrence of steering brake squeal using the complex eigenvalue analysis method. Thereafter, we analyzed the interface pressure distribution between the pads and disc, and the results showed that the distribution grew uneven with an increase in the steering wheel angle. In addition, changes in the contact and restraint conditions between the pads and disc are the key mechanisms for steering brake squeal.


2021 ◽  
Author(s):  
Ishan Ali Khan

Since their discovery, immense attention has been given to carbon nanotubes (CNTs), due to their exceptional thermal, electronic and mechanical properties and, therefore, the wide range of applications in which they are, or can be potentially, employed. Hence, it is important that all the properties of carbon nanotubes are studied extensively. This thesis studies the vibrational frequencies of double-walled and triple-walled CNTs, with and without an elastic medium surrounding them, by using Finite Element Method (FEM) and Dynamic Stiffness Matrix (DSM) formulations, considering them as Euler-Bernoulli beams coupled with van der Waals interaction forces. For FEM modelling, the linear eigenvalue problem is obtained using Galerkin weighted residual approach. The natural frequencies and mode shapes are derived from eigenvalues and eigenvectors, respectively. For DSM formulation of double-walled CNTs, a nonlinear eigenvalue problem is obtained by enforcing displacement and load end conditions to the exact solution of single equation achieved by combining the coupled governing equations. The natural frequencies are obtained using Wittrick-Williams algorithm. FEM formulation is also applied to both double and triple-walled CNTs modelled as nonlocal Euler-Bernoulli beam. The natural frequencies obtained for all the cases, are in agreement with the values provided in literature.


2021 ◽  
Author(s):  
Heenkenda Jayasinghe

Dynamic Finite Element (DFE) and conventional finite element formulations are developed to study the flexural - torsional vibration and stability of an isotropic, homogeneous and linearly elastic pre-loaded beam subjected to an axial load and end-moment. Various classical boundary conditions are considered. Elementary Euler - Bernoulli bending and St. Venant torsion beam theories were used as a starting point to develop the governing equations and the finite element solutions. The nonlinear Eigenvalue problem resulted from the DFE method was solved using a program code written in MATLAB and the natural frequencies and mode shapes of the system were determined form the Eigenvalues and Eigenvectors, respectively. Similarly, a linear Eigenvalue problem was formulated and solved using a MATLAB code for the conventional FEM method. The conventional FEM results were validated against those available in the literature and ANSYS simulations and the DFE results were compared with the FEM results. The results confirmed that tensile forces increased the natural frequencies, which indicates beam stiffening. On the contrary, compressive forces reduced the natural frequencies, suggesting a reduction in beam stiffness. Similarly, when an end-moment was applied the stiffness of the beam and the natural frequencies diminished. More importantly, when a force and end-moment were acting in combination, the results depended on the direction and magnitude of the axial force. Nevertheless, the stiffness of the beam is more sensitive to the changes in the magnitude and direction of the axial force compared to the moment. A buckling analysis of the beam was also carried out to determine the critical buckling end-moment and axial compressive force.


Author(s):  
Kyoyul Oh ◽  
Ali H. Nayfeh

Abstract We experimentally investigated nonlinear combination resonances in a graphite-epoxy cantilever plate having the configuration (–75/75/75/ – 75/75/ – 75)s. As a first step, we compared the natural frequencies and mode shapes obtained from the finite-element and experimental modal analyses. The largest difference in the obtained frequencies was 2.6%. Then, we transversely excited the plate and obtained force-response and frequency-response curves, which were used to characterize the plate dynamics. We acquired time-domain data for specific input conditions using an A/D card and used them to generate time traces, power spectra, pseudo-state portraits, and Poincaré maps. The data were obtained with an accelerometer monitoring the excitation and a laser vibrometer monitoring the plate response. We observed the external combination resonance Ω≈12(ω2+ω5) and the internal combination resonance Ω≈ω8≈12(ω2+ω13), where the ωi are the natural frequencies of the plate and Ω is the excitation frequency. The results show that a low-amplitude high-frequency excitation can produce a high-amplitude low-frequency motion.


Author(s):  
J. S. Rao ◽  
J. R. Chang ◽  
T. N. Shiau

Abstract A general finite element model is presented for determining the coupled bending-torsion natural frequencies and mode shapes of geared rotors. Uncoupled bending and torsion frequencies are obtained for examples available in literature and the present program is verified against these. The effect of the gear box is considered to determine the coupled frequencies. Parameters studied include the pressure angle, gear mesh stiffness, and bearing properties. The gear pressure angle is shown to have no effect on the natural frequencies of rotors supported on isotropic bearing supports. Several case studies with bending-torsion coupling are considered and the results obtained are compared with those available in literature. The results of a general rotor system with 8lodes are also presented.


Sign in / Sign up

Export Citation Format

Share Document