scholarly journals Constructed Wetland-Microbial Fuel Cells for Sustainable Greywater Treatment

Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 940 ◽  
Author(s):  
Ignacio Araneda ◽  
Natalia Tapia ◽  
Katherine Lizama Allende ◽  
Ignacio Vargas

Greywater reuse through decentralized and low-cost treatment systems emerges as an opportunity to tackle the existing demand for water. In recent years, constructed wetlands (CW) systems and microbial fuel cells (MFCs) have emerged as attractive technologies for sustainable wastewater treatment. In this study, constructed wetland microbial fuel cells (CW-MFCs) planted with Phragmites australis were tested to evaluate the potential of combining these two systems for synthetic greywater treatment and energy recovery. Open (CW) and closed circuit (CW-MFCs) reactors were operated for 152 days to evaluate the effect of energy recovery on the removal of soluble chemical oxygen demand (sCOD), nutrients and total suspended solids (TSS). Results indicate no significant differences for sCOD and phosphate removal efficiencies. CW-MFCs and CW reactors presented sCOD removal efficiency of 91.7 ± 5.1% and 90 ± 10% and phosphate removal efficiencies of 56.3 ± 4.4% and 61.5 ± 3.5%, respectively. Nitrate removal efficiencies were higher in CW: 99.5 ± 1% versus 86.5 ± 7.1% in CW-MFCs, respectively. Energy generation reached a maximum power density of 33.52 ± 7.87 mW m−3 and 719.57 ± 67.67 mW m−3 at a poised anode potential of −150 mV vs. Ag/AgCl. Thus, our results suggest that the incorporation of MFC systems into constructed wetlands does allow energy recovery while providing effective greywater treatment.

2006 ◽  
Vol 54 (8) ◽  
pp. 9-15 ◽  
Author(s):  
P. Aelterman ◽  
K. Rabaey ◽  
P. Clauwaert ◽  
W. Verstraete

Microbial fuel cells (MFCs) are emerging as promising technology for the treatment of wastewaters. The potential energy conversion efficiencies are examined. The rates of energy recovery (W/m3 reactor) are reviewed and evaluated. Some recent data relating to potato-processing wastewaters and a hospital wastewater effluent are reported. Finally, a set of process configurations in which MFCs could be useful to treat wastewaters is schematized. Overall, the MFC technology still faces major challenges, particularly in terms of chemical oxygen demand (COD) removal efficiency.


2010 ◽  
Vol 150 ◽  
pp. 25-25 ◽  
Author(s):  
D. Pant ◽  
D. Arslan ◽  
G. Van Bogaert ◽  
Y. Alvarez Gallego ◽  
H. De Wever ◽  
...  

2020 ◽  
Vol 81 (9) ◽  
pp. 1972-1982
Author(s):  
Jing Guo ◽  
Jianping Cheng ◽  
Jiaquan Wang ◽  
Zerui Zhang ◽  
Xiaoyun Xie ◽  
...  

Abstract This study evaluated the effects of temporary external voltage on the performance of two-chambered microbial fuel cells (MFC) that use nitrate wastewater as a substrate. Results indicate that the external voltage affected the performance of the MFC during their operation, and this effect remained even after the voltage was removed. The degradation efficiency of the chemical oxygen demand increased in the MFC under external voltages of 0.5, 0.8, and 1.1 V, and the optimal applied voltage was 1.1 V. Compared with the control group without external voltages, the MFC under a voltage of 1.1 V achieved higher current densities and efficiency of nitrate removal during their operation. The MFC with an applied voltage of 1.1 V also achieved the highest maximum power density of 2,035.08 mW/m3. The applied voltages of 0.5 and 0.8 V exerted a positive effect on the performance of the MFC. High-throughput sequencing was used to explore the anode and cathode biofilms. Results showed that the influence was highly associated with microbial community in bio-anode. The predominant functional family changed from Methanotrichaceae during start-up to Flavobacteriaceae in a steady phase.


2020 ◽  
Vol 82 (10) ◽  
pp. 1995-2006
Author(s):  
Mai Huong ◽  
Dan-Tam Costa ◽  
Bui Van Hoi

Abstract Vietnam, like many developing countries, is facing serious water quality issues due to discharging wastewaters without treatment or with improper treatment, which can constitute a potential risk for aquatic ecosystems, food safety and human health. Hybrid constructed wetlands with four substrate layers (HCW) and modified hybrid constructed wetland (MHCW-1 and MHCW-2) with seven substrate layers were designed to evaluate the enhanced treatment capacity for wastewaters. To this end, we carried out an outdoor experiment at the Vietnam Academy of Science and Technology, Vietnam to treat its wastewaters from April to August 2019. All constructed wetland units were planted with reed Phragmites australis and cyperus Cyperus alternifolius; and specifically wetland MHCW-2 was cultured with earthworm Perionys excavates. Results indicated that MHCW-1 and MHCW-2 with seven substrate layers had higher removal efficiencies of -N, TKN and TP than HCW system. More substrate layers in MHCW-1 and MHCW-2 also resulted in increase of Cu and Pb removal efficiencies, with 73.5%, 79.4%, 71.5% and 67.8%, respectively. Particularly, earthworm addition in MHCW-2 was more efficient in decreasing the concentrations of biochemical oxygen demand (BOD5), with removal efficiency over 70%.


2020 ◽  
Vol 202 ◽  
pp. 08007
Author(s):  
Wahyu Zuli Pratiwi ◽  
Hadiyanto Hadiyanto ◽  
Purwanto Purwanto ◽  
Muthi’ah Nur Fadlilah

Microalgae-Microbial Fuel Cells (MMFCs) are very popular to be used to treat organic waste. MMFCs can function as an energy-producing wastewater pre-treatment system. Wastewater can provide an adequate supply of nutrients, support the large capacity of biofuel production, and can be integrated with existing wastewater treatment infrastructure. The reduced content of Chemical Oxygen Demand (COD) is one way to measure the efficiency of wastewater treatment. MMFCs reactors are made in the form of two chambers (anode and cathode) both of which are connected by a salt bridge. Tofu wastewater as an anode and Spirulina sp as a cathode. To improve MFCs performance which is to obtain maximum COD removal and electricity generation, nutrient NaHCO3 as the nutrient carbon source for Spirulina sp was varied. The system running phase on 12 days. The results were Spirulina sp treated with MFCs technology has better growth than non-MFCs. The MMFC generated a maximum power density of 21.728 mW/cm2 and achieved 57.37% COD removal. These results showed that the combined process was effective in treating tofu wastewater.


2017 ◽  
Vol 76 (12) ◽  
pp. 3269-3277 ◽  
Author(s):  
B. Neethu ◽  
M. M. Ghangrekar

Abstract Sediment microbial fuel cells (SMFCs) are bio-electrochemical devices generating electricity from redox gradients occurring across the sediment–water interface. Sediment microbial carbon-capture cell (SMCC), a modified SMFC, uses algae grown in the overlying water of sediment and is considered as a promising system for power generation along with algal cultivation. In this study, the performance of SMCC and SMFC was evaluated in terms of power generation, dissolved oxygen variations, sediment organic matter removal and algal growth. SMCC gave a maximum power density of 22.19 mW/m2, which was 3.65 times higher than the SMFC operated under similar conditions. Sediment organic matter removal efficiencies of 77.6 ± 2.1% and 61.0 ± 1.3% were obtained in SMCC and SMFC, respectively. With presence of algae at the cathode, a maximum chemical oxygen demand and total nitrogen removal efficiencies of 63.3 ± 2.3% (8th day) and 81.6 ± 1.2% (10th day), respectively, were observed. The system appears to be favorable from a resources utilization perspective as it does not depend on external aeration or membranes and utilizes algae and organic matter present in sediment for power generation. Thus, SMCC has proven its applicability for installation in an existing oxidation pond for sediment remediation, algae growth, carbon conversion and power generation, simultaneously.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 379
Author(s):  
Ignacio T. Vargas ◽  
Natalia Tapia ◽  
John M. Regan

During the last decade, bioprospecting for electrochemically active bacteria has included the search for new sources of inoculum for microbial fuel cells (MFCs). However, concerning power and current production, a Geobacter-dominated mixed microbial community derived from a wastewater inoculum remains the standard. On the other hand, cathode performance is still one of the main limitations for MFCs, and the enrichment of a beneficial cathodic biofilm emerges as an alternative to increase its performance. Glucose-fed air-cathode reactors inoculated with a rumen-fluid enrichment and wastewater showed higher power densities and soluble chemical oxygen demand (sCOD) removal (Pmax = 824.5 mWm−2; ΔsCOD = 96.1%) than reactors inoculated only with wastewater (Pmax = 634.1 mWm−2; ΔsCOD = 91.7%). Identical anode but different cathode potentials suggest that differences in performance were due to the cathode. Pyrosequencing analysis showed no significant differences between the anodic community structures derived from both inocula but increased relative abundances of Azoarcus and Victivallis species in the cathodic rumen enrichment. Results suggest that this rarely used inoculum for single-chamber MFCs contributed to cathodic biofilm improvements with no anodic biofilm effects.


2010 ◽  
Vol 62 (10) ◽  
pp. 2408-2418 ◽  
Author(s):  
C. Y. Wu ◽  
J. K. Liu ◽  
S. H. Cheng ◽  
D. E. Surampalli ◽  
C. W. Chen ◽  
...  

In Taiwan, more than 20% of the major rivers are mildly to heavily polluted by domestic, industrial, and agricultural wastewaters due to the low percentage of sewers connected to wastewater treatment plants. Thus, constructed or engineered wetlands have been adopted as the major alternatives to clean up polluted rivers. Constructed wetlands are also applied as the tertiary wastewater treatment systems for the wastewater polishment to meet water reuse standards with lower operational costs. The studied Kaoping River Rail Bridge Constructed Wetland (KRRBCW) is the largest constructed wetland in Taiwan. It is a multi-function wetland and is used for polluted creek water purification and secondary wastewater polishment before it is discharged into the Kaoping River. Although constructed wetlands are feasible for contaminated water treatment, wetland sediments are usually the sinks for organics and metals. In this study, water and sediment samples were collected from the major wetland basins in KRRBCW. The investigation results show that more than 97% of total coliforms (TC), 55% of biochemical oxygen demand (BOD), and 30% of nutrients [e.g. total nitrogen (TN), total phosphorus (TP)] were removed via the constructed wetland system. However, results from the sediment analyses show that wetland sediments contained high concentrations of metals (e.g. Cu, Fe, Zn, Cr, and Mn), organic contents (sediment oxygen demand = 1.7 to 7.6 g O2/m2 d), and nutrients (up to 18.7 g/kg of TN and 1.22 g/kg of TN). Thus, sediments should be excavated periodically to prevent the release the pollutants into the wetland system and causing the deterioration of wetland water quality. Results of polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and nucleotide sequence analysis reveal that a variation in microbial diversity in the wetland systems was observed. Results from the DGGE analysis indicate that all sediment samples contained significant amounts of microbial ribospecies, which might contribute to the carbon degradation and nitrogen removal. Gradual disappearance of E. coli was also observed along the flow courses through natural attenuation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document