scholarly journals Dynamics and Functional Potential of Stormwater Microorganisms Colonizing Sand Filters

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1065 ◽  
Author(s):  
Andrea Fraser ◽  
Yue Zhang ◽  
Eric Sakowski ◽  
Sarah Preheim

Stormwater management is increasingly relying on engineered infiltration systems (EIS) to reduce the volume and improve the quality of managed stormwater. Yet, EIS in the field will be colonized by a diverse array of environmental microorganisms that change the physiochemical properties of the EIS and provide a habitat for microorganisms with harmful or beneficial qualities. Understanding factors influencing the composition and stability of microbial communities could open up strategies for more efficient management of stormwater. Here, we analyzed the potential pathogenic and metabolic capabilities of stormwater microorganisms colonizing idealized EIS (i.e., sand columns) under laboratory conditions over time. The diversity of microbial communities was analyzed using 16S rRNA gene sequencing, and potential pathogens and denitrifying microbes were identified from taxonomic match to known species. Denitrification potential as determined by nosZ abundance was also assessed with quantitative polymerase chain reaction PCR. Our findings demonstrate that replicate microbial communities colonizing sand columns change in a similar way over time, distinct from control columns and the source community. Potential pathogens were initially more abundant on the columns than in the stormwater but returned to background levels by 24 days after inoculation. The conditions within sand columns select for potential denitrifying microorganisms, some of which were also potential pathogens. These results demonstrate that a diverse suite of stormwater microorganisms colonize sand filters, including a transient population of potential pathogens and denitrifiers. Manipulating the inoculating microbial community of EIS could prove an effective mechanism for changing both potential pathogens and denitrifying bacteria.

2021 ◽  
Vol 12 ◽  
Author(s):  
Marc Crampon ◽  
Coralie Soulier ◽  
Pauline Sidoli ◽  
Jennifer Hellal ◽  
Catherine Joulian ◽  
...  

The demand for energy and chemicals is constantly growing, leading to an increase of the amounts of contaminants discharged to the environment. Among these, pharmaceutical molecules are frequently found in treated wastewater that is discharged into superficial waters. Indeed, wastewater treatment plants (WWTPs) are designed to remove organic pollution from urban effluents but are not specific, especially toward contaminants of emerging concern (CECs), which finally reach the natural environment. In this context, it is important to study the fate of micropollutants, especially in a soil aquifer treatment (SAT) context for water from WWTPs, and for the most persistent molecules such as benzodiazepines. In the present study, soils sampled in a reed bed frequently flooded by water from a WWTP were spiked with diazepam and oxazepam in microcosms, and their concentrations were monitored for 97 days. It appeared that the two molecules were completely degraded after 15 days of incubation. Samples were collected during the experiment in order to follow the dynamics of the microbial communities, based on 16S rRNA gene sequencing for Archaea and Bacteria, and ITS2 gene for Fungi. The evolution of diversity and of specific operating taxonomic units (OTUs) highlighted an impact of the addition of benzodiazepines, a rapid resilience of the fungal community and an evolution of the bacterial community. It appeared that OTUs from the Brevibacillus genus were more abundant at the beginning of the biodegradation process, for diazepam and oxazepam conditions. Additionally, Tax4Fun tool was applied to 16S rRNA gene sequencing data to infer on the evolution of specific metabolic functions during biodegradation. It finally appeared that the microbial community in soils frequently exposed to water from WWTP, potentially containing CECs such as diazepam and oxazepam, may be adapted to the degradation of persistent contaminants.


2020 ◽  
Author(s):  
Jeffrey Marlow ◽  
Rachel Spietz ◽  
Keun-Young Kim ◽  
Mark Ellisman ◽  
Peter Girguis ◽  
...  

AbstractCoastal salt marshes are key sites of biogeochemical cycling and ideal systems in which to investigate the community structure of complex microbial communities. Here, we clarify structural-functional relationships among microorganisms and their mineralogical environment, revealing previously undescribed metabolic activity patterns and precise spatial arrangements within salt marsh sediment. Following 3.7-day in situ incubations with a non-canonical amino acid that was incorporated into new biomass, samples were embedded and analyzed by correlative fluorescence and electron microscopy to map the microscale arrangements of anabolically active and inactive organisms alongside mineral grains. Parallel sediment samples were examined by fluorescence-activated cell sorting and 16S rRNA gene sequencing to link anabolic activity to taxonomic identity. Both approaches demonstrated a rapid decline in the proportion of anabolically active cells with depth into salt marsh sediment, from ∼60% in the top cm to 10-25% between 2-7 cm. From the top to the bottom, the most prominent active community members shifted from sulfur cycling phototrophic consortia, to sulfate-reducing bacteria likely oxidizing organic compounds, to fermentative lineages. Correlative microscopy revealed more abundant (and more anabolically active) organisms around non-quartz minerals including rutile, orthoclase, and plagioclase. Microbe-mineral relationships appear to be dynamic and context-dependent arbiters of biogeochemical cycling.Statement of SignificanceMicroscale spatial relationships dictate critical aspects of a microbiome’s inner workings and emergent properties, such as evolutionary pathways, niche development, and community structure and function. However, many commonly used methods in microbial ecology neglect this parameter – obscuring important microbe-microbe and microbe-mineral interactions – and instead employ bulk-scale methodologies that are incapable of resolving these intricate relationships.This benchmark study presents a compelling new approach for exploring the anabolic activity of a complex microbial community by mapping the precise spatial configuration of anabolically active organisms within mineralogically heterogeneous sediment through in situ incubation, resin embedding, and correlative fluorescence and electron microscopy. In parallel, active organisms were identified through fluorescence-activated cell sorting and 16S rRNA gene sequencing, enabling a powerful interpretive framework connecting location, identity, activity, and putative biogeochemical roles of microbial community members.We deploy this novel approach in salt marsh sediment, revealing quantitative insights into the fundamental principles that govern the structure and function of sediment-hosted microbial communities. In particular, at different sediment horizons, we observed striking changes in the proportion of anabolically active cells, the identities of the most prominent active community members, and the nature of microbe-mineral affiliations. Improved approaches for understanding microscale ecosystems in a new light, such as those presented here, reveal environmental parameters that promote or constrain metabolic activity and clarify the impact that microbial communities have on our world.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sarah Zecchin ◽  
Simona Crognale ◽  
Patrizia Zaccheo ◽  
Stefano Fazi ◽  
Stefano Amalfitano ◽  
...  

Arsenic mobilization in groundwater systems is driven by a variety of functionally diverse microorganisms and complex interconnections between different physicochemical factors. In order to unravel this great ecosystem complexity, groundwaters with varying background concentrations and speciation of arsenic were considered in the Po Plain (Northern Italy), one of the most populated areas in Europe affected by metalloid contamination. High-throughput Illumina 16S rRNA gene sequencing, CARD-FISH and enrichment of arsenic-transforming consortia showed that among the analyzed groundwaters, diverse microbial communities were present, both in terms of diversity and functionality. Oxidized inorganic arsenic [arsenite, As(III)] was the main driver that shaped each community. Several uncharacterized members of the genus Pseudomonas, putatively involved in metalloid transformation, were revealed in situ in the most contaminated samples. With a cultivation approach, arsenic metabolisms potentially active at the site were evidenced. In chemolithoautotrophic conditions, As(III) oxidation rate linearly correlated to As(III) concentration measured at the parental sites, suggesting that local As(III) concentration was a relevant factor that selected for As(III)-oxidizing bacterial populations. In view of the exploitation of these As(III)-oxidizing consortia in biotechnology-based arsenic bioremediation actions, these results suggest that contaminated aquifers in Northern Italy host unexplored microbial populations that provide essential ecosystem services.


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 638
Author(s):  
Caitlin E. Older ◽  
Aline Rodrigues Hoffmann ◽  
Kathleen Hoover ◽  
Frane Banovic

Although Staphylococcus pseudintermedius is considered the major pathogen associated with superficial canine pyoderma, no study has investigated the entire bacterial community in these lesions with molecular techniques. The objectives of this study were to characterize the bacterial microbiota in two forms of superficial canine pyoderma lesions, superficial bacterial folliculitis (SBF) and epidermal collarette (EC), especially in terms of the staphylococcal community. Swabs from 12 SBF and 9 EC lesions were obtained from eight and six atopic dogs, respectively. Eight samples from the axilla and groin of four healthy dogs served as controls. DNA was extracted for 16S rRNA gene sequencing and quantitative polymerase chain reaction of Staphylococcus spp. and S. pseudintermedius. Healthy skin samples harbored significantly more diverse bacterial communities than pyoderma samples. Healthy samples had communities that were more similar to each other, and were distinct from pyoderma samples. Staphylococcus spp. abundance was increased in pyoderma samples, especially those from EC samples. Although determining species-level identities of staphylococcal sequences revealed many species, S. pseudintermedius was the primary staphylococcal species found in all sample types. As expected, there are many differences in the microbiota when comparing healthy and canine pyoderma lesions samples. These lesions do not seem to be associated with a change in the relative abundance of specific Staphylococcus species, but simply an overall increase in Staphylococcus spp. abundance. The results of this study provide a starting point for future studies investigating how antimicrobial treatments may further change the microbiota associated with these lesions.


2020 ◽  
Vol 88 (12) ◽  
Author(s):  
Eric L. Brown ◽  
Heather T. Essigmann ◽  
Kristi L. Hoffman ◽  
Noah W. Palm ◽  
Sarah M. Gunter ◽  
...  

ABSTRACT Mucosal surfaces like those present in the lung, gut, and mouth interface with distinct external environments. These mucosal gateways are not only portals of entry for potential pathogens but also homes to microbial communities that impact host health. Secretory immunoglobulin A (SIgA) is the single most abundant acquired immune component secreted onto mucosal surfaces and, via the process of immune exclusion, shapes the architecture of these microbiomes. Not all microorganisms at mucosal surfaces are targeted by SIgA; therefore, a better understanding of the SIgA-coated fraction may identify the microbial constituents that stimulate host immune responses in the context of health and disease. Chronic diseases like type 2 diabetes are associated with altered microbial communities (dysbiosis) that in turn affect immune-mediated homeostasis. 16S rRNA gene sequencing of SIgA-coated/uncoated bacteria (IgA-Biome) was conducted on stool and saliva samples of normoglycemic participants and individuals with prediabetes or diabetes (n = 8/group). These analyses demonstrated shifts in relative abundance in the IgA-Biome profiles between normoglycemic, prediabetic, or diabetic samples distinct from that of the overall microbiome. Differences in IgA-Biome alpha diversity were apparent for both stool and saliva, while overarching bacterial community differences (beta diversity) were also observed in saliva. These data suggest that IgA-Biome analyses can be used to identify novel microbial signatures associated with diabetes and support the need for further studies exploring these communities. Ultimately, an understanding of the IgA-Biome may promote the development of novel strategies to restructure the microbiome as a means of preventing or treating diseases associated with dysbiosis at mucosal surfaces.


2022 ◽  
Vol 10 (1) ◽  
pp. 170
Author(s):  
Andrey L. Rakitin ◽  
Shahjahon Begmatov ◽  
Alexey V. Beletsky ◽  
Dmitriy A. Philippov ◽  
Vitaly V. Kadnikov ◽  
...  

Large areas in the northern hemisphere are covered by extensive wetlands, which represent a complex mosaic of raised bogs, eutrophic fens, and aapa mires all in proximity to each other. Aapa mires differ from other types of wetlands by their concave surface, heavily watered by the central part, as well as by the presence of large-patterned string-flark complexes. In this paper, we characterized microbial diversity patterns in the surface peat layers of the neighboring string and flark structures located within the mire site in the Vologda region of European North Russia, using 16S rRNA gene sequencing. The microbial communities in raised strings were clearly distinct from those in submerged flarks. Strings were dominated by the Alpha- and Gammaproteobacteria. Other abundant groups were the Acidobacteriota, Bacteroidota, Verrucomicrobiota, Actinobacteriota, and Planctomycetota. Archaea accounted for only 0.4% of 16S rRNA gene sequences retrieved from strings. By contrast, they comprised about 22% of all sequences in submerged flarks and mostly belonged to methanogenic lineages. Methanotrophs were nearly absent. Other flark-specific microorganisms included the phyla Chloroflexi, Spirochaetota, Desulfobacterota, Beijerinckiaceae- and Rhodomicrobiaceae-affiliated Alphaproteobacteria, and uncultivated groups env.OPS_17 and vadinHA17 of the Bacteroidota. Such pattern probably reflects local anaerobic conditions in the submerged peat layers in flarks.


2021 ◽  
pp. 1-13
Author(s):  
Gilda Varliero ◽  
Alexandra Holland ◽  
Gary L. A. Barker ◽  
Marian L. Yallop ◽  
Andrew G. Fountain ◽  
...  

Abstract Distant glacial areas are interconnected by a complex system of fractures and water channels which run in the glacier interior and characterize the englacial realm. Water can slowly freeze in these channels where the slow freezing excludes air bubbles giving the ice a clear aspect. This ice is uplifted to the surface ablation zone by glacial movements and can therefore be observed in the form of clear surface ice bands. We employed an indirect method to sample englacial water by coring these ice bands. We were able, for the first time, to compare microbial communities sampled from clear (i.e. frozen englacial water bands) and cloudy ice (i.e. meteoric ice) through 16S rRNA gene sequencing. Although microbial communities were primarily shaped and structured by their spatial distribution on the glacier, ice type was a clear secondary factor. One area of the glacier, in particular, presented significant microbial community clear/cloudy ice differences. Although the clear ice and supraglacial communities showed typical cold-adapted glacial communities, the cloudy ice had a less defined glacial community and ubiquitous environmental organisms. These results highlight the role of englacial channels in the microbial dispersion within the glacier and, possibly, in the shaping of glacial microbial communities.


2018 ◽  
Author(s):  
Ehsaneddin Asgari ◽  
Kiavash Garakani ◽  
Alice Carolyn McHardy ◽  
Mohammad R.K. Mofrad

Motivation: Microbial communities play important roles in the function and maintenance of various biosystems, ranging from the human body to the environment. A major challenge in microbiome research is the classification of microbial communities of different environments or host phenotypes. The most common and cost-effective approach for such studies to date is 16S rRNA gene sequencing. Recent falls in sequencing costs have increased the demand for simple, efficient, and accurate methods for rapid detection or diagnosis with proved applications in medicine, agriculture, and forensic science. We describe a reference- and alignment-free approach for predicting environments and host phenotypes from 16S rRNA gene sequencing based on k-mer representations that benefits from a bootstrapping framework for investigating the sufficiency of shallow sub-samples. Deep learning methods as well as classical approaches were explored for predicting environments and host phenotypes. Results: k-mer distribution of shallow sub-samples outperformed the computationally costly Operational Taxonomic Unit (OTU) features in the tasks of body-site identification and Crohn's disease prediction. Aside from being more accurate, using k-mer features in shallow sub-samples allows (i) skipping computationally costly sequence alignments required in OTU-picking, and (ii) provided a proof of concept for the sufficiency of shallow and short-length 16S rRNA sequencing for phenotype prediction. In addition, k-mer features predicted representative 16S rRNA gene sequences of 18 ecological environments, and 5 organismal environments with high macro-F1 scores of 0.88 and 0.87. For large datasets, deep learning outperformed classical methods such as Random Forest and SVM. Availability: The software and datasets are available at https://llp.berkeley.edu/micropheno.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marlene Lorgen-Ritchie ◽  
Michael Clarkson ◽  
Lynn Chalmers ◽  
John F. Taylor ◽  
Herve Migaud ◽  
...  

Atlantic salmon aquaculture is undergoing an expansion of land-based recirculating aquaculture systems (RAS), especially for freshwater (FW) stages of production. Juvenile salmon undergo parr-smolt transformation, also known as smoltification and become pre-adapted to tolerate seawater (SW). One aspect requiring study is the development of microbial communities during this time, especially in RAS systems. Here we analyzed temporal changes in microbiome associated with the intestine in Atlantic salmon during smolt production in a commercial RAS production facility and followed the same cohort of fish post-seawater transfer (SWT), using 16S rRNA gene sequencing. Microbial diversity and richness showed an increase over time across FW production, but declined sharply and significantly 1-week post-SWT before re-establishing itself with a completely different community structure after 4 weeks. Core microbial taxa could be assigned to three distinct categories; (1) omnipresent, (2) salinity specific, or (3) transient. By including diet and water samples in the analyses, we classified true core taxa associated with the host, those associated with the diet, and transient cores associated with microbial communities in tank water. The rising trend observed in microbial richness in the water may be a consequence of a temporal increase in organic load while dominance of Vibrionaceae may be attributed to the higher temperatures maintained during RAS production and above average natural water temperatures post-SWT. Functional analysis suggests modulation of metabolic pathways post-SWT, but downstream impacts on fish growth and health in a commercial setting remain to be elucidated. A deeper understanding of the interplay between microbial composition and functionality can play a role in optimizing fish performance in tightly regulated RAS production.


Sign in / Sign up

Export Citation Format

Share Document