scholarly journals Characterization of Cutaneous Bacterial Microbiota from Superficial Pyoderma Forms in Atopic Dogs

Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 638
Author(s):  
Caitlin E. Older ◽  
Aline Rodrigues Hoffmann ◽  
Kathleen Hoover ◽  
Frane Banovic

Although Staphylococcus pseudintermedius is considered the major pathogen associated with superficial canine pyoderma, no study has investigated the entire bacterial community in these lesions with molecular techniques. The objectives of this study were to characterize the bacterial microbiota in two forms of superficial canine pyoderma lesions, superficial bacterial folliculitis (SBF) and epidermal collarette (EC), especially in terms of the staphylococcal community. Swabs from 12 SBF and 9 EC lesions were obtained from eight and six atopic dogs, respectively. Eight samples from the axilla and groin of four healthy dogs served as controls. DNA was extracted for 16S rRNA gene sequencing and quantitative polymerase chain reaction of Staphylococcus spp. and S. pseudintermedius. Healthy skin samples harbored significantly more diverse bacterial communities than pyoderma samples. Healthy samples had communities that were more similar to each other, and were distinct from pyoderma samples. Staphylococcus spp. abundance was increased in pyoderma samples, especially those from EC samples. Although determining species-level identities of staphylococcal sequences revealed many species, S. pseudintermedius was the primary staphylococcal species found in all sample types. As expected, there are many differences in the microbiota when comparing healthy and canine pyoderma lesions samples. These lesions do not seem to be associated with a change in the relative abundance of specific Staphylococcus species, but simply an overall increase in Staphylococcus spp. abundance. The results of this study provide a starting point for future studies investigating how antimicrobial treatments may further change the microbiota associated with these lesions.

Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Elisa Cotozzolo ◽  
Paola Cremonesi ◽  
Giulio Curone ◽  
Laura Menchetti ◽  
Federica Riva ◽  
...  

The microbiota is extremely important for the animal’s health, but, to date, knowledge on the intestinal microbiota of the rabbit is very limited. This study aimed to describe bacterial populations that inhabit the different gastrointestinal compartments of the rabbit: stomach, duodenum, jejunum, ileum, caecum, and colon. Samples of the luminal content from all compartments of 14 healthy New White Zealand rabbits were collected at slaughter and analyzed using next generation 16S rRNA Gene Sequencing. The findings uncovered considerable differences in the taxonomic levels among the regions of the digestive tract. Firmicutes were the most abundant phylum in all of the sections (45.9%), followed by Bacteroidetes in the large intestine (38.9%) and Euryarchaeota in the foregut (25.9%). Four clusters of bacterial populations were observed along the digestive system: (i) stomach, (ii) duodenum and jejunum, (iii) ileum, and (iv) large intestine. Caecum and colon showed the highest richness and diversity in bacterial species, while the highest variability was found in the upper digestive tract. Knowledge of the physiological microbiota of healthy rabbits could be important for preserving the health and welfare of the host as well as for finding strategies to manipulate the gut microbiota in order to also promote productive performance.


Foods ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 489 ◽  
Author(s):  
Adriana Antunes-Rohling ◽  
Silvia Calero ◽  
Nabil Halaihel ◽  
Pedro Marquina ◽  
Javier Raso ◽  
...  

The aim of this study was to characterize the spoilage microbiota of hake fillets stored under modified atmospheres (MAP) (50% CO2/50% N2) at different temperatures using high-throughput 16S rRNA gene sequencing and to compare the results with those obtained using traditional microbiology techniques. The results obtained indicate that, as expected, higher storage temperatures lead to shorter shelf-lives (the time of sensory rejection by panelists). Thus, the shelf-life decreased from six days to two days for Batch A when the storage temperature increased from 1 to 7 °C, and from five to two days—when the same increase in storage temperature was compared—for Batch B. In all cases, the trimethylamine (TMA) levels measured at the time of sensory rejection of hake fillets exceeded the recommended threshold of 5 mg/100 g. Photobacterium and Psychrobacter were the most abundant genera at the time of spoilage in all but one of the samples analyzed: Thus, Photobacterium represented between 19% and 46%, and Psychrobacter between 27% and 38% of the total microbiota. They were followed by Moritella, Carnobacterium, Shewanella, and Vibrio, whose relative order varied depending on the sample/batch analyzed. These results highlight the relevance of Photobacterium as a spoiler of hake stored in atmospheres rich in CO2. Further research will be required to elucidate if other microorganisms, such as Psychrobacter, Moritella, or Carnobacterium, also contribute to spoilage of hake when stored under MAP.


Phytotaxa ◽  
2019 ◽  
Vol 387 (4) ◽  
pp. 269 ◽  
Author(s):  
ELANE D. CUNHA DE OLIVEIRA ◽  
ALAN C. DA CUNHA ◽  
NATALINA B. DA SILVA ◽  
RAQUEL CASTELO-BRANCO ◽  
JOÃO MORAIS ◽  
...  

The Amazon region contains a great diversity of species, and the Amazon River basin accounts for almost 20% of all the freshwater in the world. Despite the favorable environmental conditions in this region, little is known about the cyanobacterial diversity of this waterbody, especially at the mouth of the river. In this paper, we used the polyphasic approach to identify 14 cyanobacterial strains isolated in the Amazon River on the inlet site from a drinking water supply located close to the river mouth. The isolated strains were characterized based on morphology, behavior in culture, 16S rRNA gene sequencing, phylogenetic analysis and potential for toxin production. The isolated strains belong to seven different genera, namely, Alkalinema, Cephalothrix, Limnothrix, Leptolyngbya, Phormidium, Pseudanabaena and an unidentified Nostocales taxa that may represent a new genus. Strikingly, there were no new species, nor detection of gene clusters associated with cyanotoxin production. However, the phylogenetic placements of the Amazonian strains of Limnothrix and Pseudanabaena provide new insight into the taxonomy of these genera, reinforcing the need for taxonomic revision.


2020 ◽  
Author(s):  
Houda Bahig ◽  
Clifton D Fuller ◽  
Aparna Mitra ◽  
Travis Solley ◽  
Sweet Ping Ng ◽  
...  

ABSTRACTPurposeTo describe the baseline and serial tumor microbiome in HPV-associated oropharynx cancer (OPC) over the course of radiotherapy (RT).MethodsPatients with newly diagnosed HPV-associated OPC treated with definitive radiotherapy +/- concurrent chemotherapy were enrolled in this prospective study. Using 16S rRNA gene sequencing, dynamic changes in tumor microbiome during RT were investigated. Surface tumor samples were obtained before RT and at week 1, 3 and 5 of RT. Radiological primary tumor response at mid-treatment was categorized as complete (CR) or partial (PR).ResultsTen patients were enrolled. Mean age was 63 years (range: 51-71). As per AJCC 8th Ed, 50%, 20% and 30% of patients had stage I, II and III, respectively. At 4-weeks, 7 patients had CR and 3 patients had PR; at follow-up imaging post treatment, all patients had CR. Baseline diversity of tumoral and buccal microbiomes was not statistically different. For the entire cohort, alpha diversity was significantly decreased over the course of treatment (p=0.02). There was a significant alteration in the bacterial community within the first week of radiation. Baseline tumor alpha diversity of patients with CR was significantly higher than those with PR (p=0.03). While patients with CR had significant reduction in diversity over the course of radiation (p=0.02), the diversity remained unchanged in patients with PR. Patients with history of smoking had significantly increased abundance of Granulicatella (p=0.04), and Kingella (0.05) and lower abundance of Alloprevotella (p=0.04) compared to never smokers.ConclusionsThe tumor microbiome of HPV-associated OPC exhibits reduced alpha diversity and altered taxa abundance over the course of radiotherapy. The baseline bacterial profiles of smokers vs. non-smokers were inherently different. Baseline tumor alpha diversity of patients with CR was higher than patients with PR, suggesting that the microbiome as a biomarker of radiation response deserves further investigation.


2020 ◽  
Author(s):  
Luisa W. Hugerth ◽  
Marcela Pereira ◽  
Yinghua Zha ◽  
Maike Seifert ◽  
Vilde Kaldhusdal ◽  
...  

AbstractThe vaginal microbiome has been connected to a wide range of health outcomes. This has led to a thriving research environment, but also to the use of conflicting methodologies to study its microbial composition. Here we systematically assess best practices for the sequencing-based characterization of the human vaginal microbiome. As far as 16S rRNA gene sequencing is concerned, the V1-V3 region has the best theoretical properties, but limitations of current sequencing technologies mean that the V3-V4 region performs equally well. Both of these approaches present very good agreement with qPCR quantification of key taxa, provided an appropriate bioinformatic pipeline is used. Shotgun metagenomic sequencing presents an interesting alternative to 16S amplification and sequencing, but it is not without its challenges. We have assessed different tools for the removal of host reads and the taxonomic annotation of metagenomic reads, including a new, easy-to-build and – use, reference database of vaginal taxa. This strategy performed as well as the best performing previously published strategies. Despite the many advantages of shotgun sequencing none of the shotgun approaches assessed here had as good agreement with the qPCR data as 16S rRNA gene sequencing.ImportanceThe vaginal microbiome has been connected to a wide range of health outcomes, from susceptibility to sexually transmitted infections to gynecological cancers and pregnancy outcomes. This has led to a thriving research environment, but also to conflicting available methodologies, including many studies that do not report their molecular biological and bioinformatic methods in sufficient detail for them to be considered reproducible. This can lead to conflicting messages and delay progress from descriptive to intervention studies. By systematically assessing best practices for the characterization of the human vaginal microbiome, this study will enable past studies to be assessed more critically and assist future studies in the selection of appropriate methods for their specific research questions.


2019 ◽  
Author(s):  
Federica Caradonia ◽  
Domenico Ronga ◽  
Marcello Catellani ◽  
Cleber Vinícius Giaretta Azevedo ◽  
Rodrigo Alegria Terrazas ◽  
...  

ABSTRACTThe microbial communities thriving at the root-soil interface have the potential to improve plant growth and sustainable crop production. Yet, how agricultural practices, such as the application of either mineral or organic nitrogen fertilisers, impact on the composition and functions of these communities remains to be fully elucidated. By deploying a two-pronged 16S rRNA gene sequencing and predictive metagenomics approach we demonstrated that the bacterial microbiota of field-grown tomato (Solanum lycopersicum) plants is the product of a selective process that progressively differentiates between rhizosphere and root microhabitats. This process initiates as early as plants are in a nursery stage and it is then more marked at late developmental stages, in particular at harvest. This selection acts on both the bacterial relative abundances and phylogenetic assignments, with a bias for the enrichment of members of the phylum Actinobacteria in the root compartment. Digestate-based and mineral-based nitrogen fertilisers trigger a distinct bacterial enrichment in both rhizosphere and root microhabitats. This compositional diversification mirrors a predicted functional diversification of the root-inhabiting communities, manifested predominantly by the differential enrichment of genes associated to ABC transporters and the two-component system. Together, our data suggest that the microbiota thriving at the tomato root-soil interface is modulated by and in responses to the type of nitrogen fertiliser applied to the field.


2020 ◽  
Vol 1 (1) ◽  
pp. 5-13
Author(s):  
Sreenivasa Nayaka ◽  
Muthuraj R. ◽  
Bidhayak Chakraborty ◽  
Meghashyama Prabhakara Bhat ◽  
Pallavi S.S. ◽  
...  

In the present study, an Actinomycetes strain KSA-2 was isolated from freshwater sediment samples of Kali River, Karwar, Karnataka, India. The strain KSA-2 was selected among seven isolates based on primary screening of antimicrobial activity against pathogenic organisms. The morphological physiological and biochemical characterizations were performed, the bioactive secondary metabolites were produced in liquid broth culture and was characterized by UV-Vis. spectroscopy and FTIR spectroscopy. Later, the potent KSA-2 strain was identified by 16S rRNA gene sequencing (1366 bp) and a phylogenetic tree was constructed and the strain KSA-2 was confirmed as Streptomyces thermocarboxydus strain KSA-2. Further, the characterization of methanolic extract by UV-Vis. and FTIR spectroscopy analysis revealed the presence of broad spectrum of antimicrobial and other compounds and alkyl halides, alkenes, sulfoxide, carboxylic acids, alkanes respectively.


2005 ◽  
Vol 55 (1) ◽  
pp. 433-436 ◽  
Author(s):  
Hideki Yamamura ◽  
Masayuki Hayakawa ◽  
Youji Nakagawa ◽  
Tomohiko Tamura ◽  
Tetsuro Kohno ◽  
...  

Chemotaxonomic and morphological characterization of two actinomycete strains, MS1-3T and AS4-2, respectively isolated from moat sediment and scumming activated sludge, was carried out. This characterization clearly demonstrated that strains MS1-3T and AS4-2 belong to the genus Nocardia. 16S rRNA gene sequencing studies showed that these isolates are most closely related to Nocardia beijingensis (98·1–98·3 % similarity), Nocardia brasiliensis (97·9–98·0 %) and Nocardia tenerifensis (97·8–97·9 %). However, the results of DNA–DNA hybridizations and physiological and biochemical tests showed that strains MS1-3T and AS4-2 could be differentiated from their closest phylogenetic relatives both genotypically and phenotypically. It is proposed that the two isolates be classified as representatives of a novel species of Nocardia, Nocardia takedensis sp. nov. The type strain is MS1-3T (=NBRC 100417T=DSM 44801T); AS4-2 (=NBRC 100418=DSM 44802) is a reference strain.


Sign in / Sign up

Export Citation Format

Share Document