scholarly journals Hydraulic Features of Flow Through Local Non- Submerged Rigid Vegetation in the Y-shaped Confluence Channel

Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 146 ◽  
Author(s):  
Xuneng Tong ◽  
Xiaodong Liu ◽  
Ting Yang ◽  
Zulin Hua ◽  
Zian Wang ◽  
...  

A laboratory measurement with acoustic Doppler velocimeter (ADV) was used to investigate the flow through a Y-shaped confluence channel partially covered with rigid vegetation on its inner bank. In this study, the flow velocities in cases with and without vegetation were measured by the ADV in a Y-shaped confluence channel. The results clearly showed that the existence of non-submerged rigid plants has changed the internal flow structure. The velocity in the non-vegetated area is greater than in the vegetated area. There is a large exchange of mass and momentum between the vegetated and non-vegetated areas. In addition, due to the presence of vegetation, the high-velocity area moved rapidly to the middle of the non-vegetated area in the vicinity of tributaries, and the secondary flow phenomenon disappeared. The presence of vegetation made the flow in non-vegetated areas more intense. The turbulent kinetic energy of the non-vegetated area was smaller than that of the vegetated area.

Author(s):  
Xuneng Tong ◽  
Xiaodong Liu ◽  
Ting Yang ◽  
Zulin Hua ◽  
Zian Wang ◽  
...  

Vegetation has a significant influence on velocity distribution and turbulent energy in a confluence channel. A laboratory measurement with ADV was used to investigate the flow through a Y-shaped confluence channel partially covered with rigid vegetation on its inner bank. In this study, the flow velocities in cases with and without vegetation were measured by the ADV in a Y-shaped confluence channel. The results clearly show that the existence of non-submerged rigid plants has changed the internal flow structure, that the velocity in the non-vegetated area is greater than in the vegetated area, and that there is a large exchange of mass and momentum between the vegetated and non-vegetated areas. The velocity on both sides is significantly reduced when vegetation is present. In the vicinity of tributaries, due to the presence of vegetation, the high-velocity area moved rapidly to the middle of the non-vegetated area, and the secondary flow phenomenon disappeared. In the mainstream, when vegetation was present, circulation disappeared, and the degree of lateral mixing decreased. The presence of vegetation caused a great change in the internal flow structure and made the flow in non-vegetated areas more intense.


Author(s):  
Chung-Chu Chen ◽  
Tong-Miin Liou

Laser-Doppler velocimetry (LDV) measurements are presented of turbulent flow in a two-pass square-sectioned duct simulating the coolant passages employed in gas turbine blades under rotating and non-rotating conditions. For all cases studied, the Reynolds number characterized by duct hydraulic diameter (Dh) and bulk mean velocity (Ub) was fixed at 1 × 104. The rotating case had a range of rotation number (Ro = ΩDh/Ub) from 0 to 0.2. It is found that both the skewness of streamwise mean velocity and magnitude of secondary-flow velocity increase linearly, and the magnitude of turbulence intensity level increases non-linearly with increasing Ro. As Ro is increased, the curvature induced symmetric Dean vortices in the turn for Ro = 0 is gradually dominated by a single vortex most of which impinges directly on the outer part of leading wall. The high turbulent kinetic energy is closely related to the dominant vortex prevailing inside the 180-deg sharp turn. For the first time, the measured flow characteristics account for the reported spanwise heat transfer distributions in the rotating channels, especially the high heat transfer enhancement on the leading wall in the turn. For both rotating and non-rotating cases, the direction and strength of the secondary flow with respect to the wall are the most important fluid dynamic factors affecting local heat transfer distributions inside a 180-deg sharp turn. The role of the turbulent kinetic energy in affecting the overall enhancement of heat transfer is well addressed.


2003 ◽  
Vol 125 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Tong-Miin Liou ◽  
Chung-Chu Chen ◽  
Meng-Yu Chen

Laser Doppler velocimetry (LDV) measurements are presented of turbulent flow in a two-pass square-sectioned smooth duct simulating the coolant passages employed in gas turbine blades under rotating and nonrotating conditions. For all cases studied, the Reynolds number characterized by duct hydraulic diameter and bulk mean velocity was fixed at 1×104. The rotation number Ro was varied from 0 to 0.2. It is found that as Ro is increased, both the skewness (SK) of streamwise mean velocity and magnitude of secondary-flow velocity increase linearly, SK=2.3 Ro and U2+V2¯/Uh=2.3 Ro+0.4, and the magnitude of turbulence intensity level increases exponentially. As Ro is increased, the curvature induced symmetric Dean vortices in the turn for Ro=0 is gradually dominated by a single vortex most of which impinges directly on the outer part of leading wall. The high turbulent kinetic energy is closely related to the dominant vortex prevailing inside the 180-deg sharp turn. The size of separation bubble immediately after the turn is found to diminish to null as Ro is increased from 0 to 0.2. A simple correlation is developed between the bubble size and Ro. A critical range of Ro responsible for the switch of faster moving flow from near the outer wall to the inner wall is identified. For both rotating and nonrotating cases, the direction and strength of the secondary flow with respect to the wall are the most important fluid dynamic factors affecting local the heat transfer distributions inside a 180-deg sharp turn. The role of the turbulent kinetic energy in the overall enhancement of heat transfer is well addressed.


Author(s):  
Francesco Soranna ◽  
Yi-Chih Chow ◽  
Oguz Uzol ◽  
Joseph Katz

The flow structure and turbulence in the tip region of a rotor blade operating downstream of a row of Inlet Guide Vanes (IGVs) are investigated experimentally in a refractive index matched facility that provides unobstructed view of the entire flow field. Stereo-PIV measurements are performed in closely spaced radial planes near the blade tip in a region extending from (slightly upstream of) the blade trailing edge to about 40% of the chord downstream of it. The data enable calculations of all the components of the phase-averaged velocity and vorticity vectors, as well as the strain rate, Reynolds stress, and turbulent diffusion tensors. Each rotor blade is confined between two tip-leakage vortices, a right hand vortex (RHV), generated by the subject blade and propagating along its right hand side, and a left hand vortex (LHV), generated by the previous blade in the same row and propagating along the left hand side of the subject blade. In addition, a trailing edge vortex (TEV) lays underneath the LHV and is subject to intense shearing/deformation by the LHV. RHV-induced radial gradients of radial phase-averaged velocity cause negative turbulence production, P, along the RHV-axis, and formation of a region of low P in the gap between the RHV and the blade suction surface. Trends of turbulent kinetic energy k and P within the RHV do not agree due to the effects of advection by the phase-averaged flow. To the left of the blade, shearing of the TEV by the LHV enhances turbulence production in the region between the two vortices and the rotor wake. Trends of turbulent kinetic energy and its production rate are in good agreement and peaks of k and P occur at the same location. As the TEV migrates away from the LHV, shearing effects become weaker and the dominant contributors to production are terms containing vortex-induced radial gradients of axial and radial velocities. Turbulent diffusion is a minor contributor to the evolution of turbulent kinetic energy in the tip region. It is also shown that the tip-leakage flow/vortex deteriorates the rotor blade performance, causing a ∼66% increase in shaft power input (per unit mass flow-rate) in the tip region in comparison with midspan.


2016 ◽  
Vol 78 (10) ◽  
Author(s):  
Suraya Sharil ◽  
Wan Hanna Melini Wan Mohtar ◽  
Siti Fatin Mohd Razali

This paper looks into the flow profiles in terms of longitudinal and transverse velocities, turbulence intensity and turbulent kinetic energy in relation to the vegetation density, flow depth and stem Reynolds number. An experimental study was conducted in a fully vegetated flume, whereby a control volume was selected for detailed velocity measurement using Acoustic Doppler Velocimeter (ADV). This research considered 0.97%, 3.90% and 7.80% vegetation density or solid volume fractions (SVF) which are categorised as sparse in the lab work. Series of experiments were conducted in uniform flow condition with stem Reynolds number, Red ranging between 1300 and 3000. Experimental results managed to capture the wake area (velocity deficit; < 1) and fast flow region (velocity enhance; > 1). The boundary between the wake area and fast flow region is reflected by the highest magnitude of the normalised longitudinal turbulence intensity and turbulent kinetic energy. Positive normalised transverse velocity represents the flow diversion away from the vegetation and the negative normalised transverse velocity indicates flux towards the centre of the wake. Both turbulence intensity and turbulent kinetic energy display no observable relation with the flow depth. This is probably because the characteristic length for turbulent flow through vegetation is the stem diameter.  


1993 ◽  
Vol 115 (1) ◽  
pp. 109-114 ◽  
Author(s):  
T.-M. Liou ◽  
Y.-Y. Wu ◽  
Y. Chang

Laser-Doppler velocimeter measurements of mean velocities, turbulence intensities, and Reynolds stresses are presented for periodic fully developed flows in a channel with square rib-disturbed walls on two opposite sides. Quantities such as the vorticity thickness and turbulent kinetic energy are used to characterize the flow. The investigated flow was periodic in space. The Reynolds number based on the channel hydraulic diameter was 3.3×104. The ratios of pitch to rib-height and rib-height to chamber-height were 10 and 0.133, respectively. Regions where maximum and minimum Reynolds stress and turbulent kinetic energy occurred were identified from the results. The growth rate of the shear layers of the present study was compared with that of a backward-facing step. The measured turbulence anisotropy and structure parameter distribution were used to examine the basic assumptions embedded in the k–ε and k–ε–A models. For a given axial station, the peak axial mean-velocity was found not to occur at the center point. The secondary flow was determined to be Prandtl’s secondary flow of the second kind according to the measured streamwise mean vorticity and its production term.


Sign in / Sign up

Export Citation Format

Share Document