scholarly journals Condition Assessment of Water Infrastructures: Application to Segura River Basin (Spain)

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1169
Author(s):  
Mario Urrea-Mallebrera ◽  
Luis Altarejos-García ◽  
Juan García-Bermejo ◽  
Bartolomé Collado-López

The paper deals with the condition assessment of water management infrastructures such as storage facilities, water mains and water distribution facilities. The objective is to develop a methodology able to provide a fast, simple assessment of present asset condition, that can also be used for predicting future conditions under different investment scenarios. The authors investigate the use of different methodologies to assess condition with focus on simple, indirect condition indices based on maintenance records, such as Infrastructure Value Index (IVI) and Asset Sustainability Index (ASI). The novelty of the approach presented is the development of a methodology that combines an asset inventory together with maintenance data, that can be integrated hierarchically, delivering an assessment of condition of elements, assets and groups of assets in a bottom-up fashion. The methodology has been applied to a group of water management infrastructures of the Segura River Basin in Spain. The main conclusion is that the proposed methodology allows to assess assets’ sustainability based upon past and current trends in operation and maintenance budgets, providing a baseline for planning future maintenance actions.

Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2391
Author(s):  
Karel van Laarhoven ◽  
Jip van Steen ◽  
Frank van der Hulst ◽  
Hector Hernandez Delgadillo

The water distribution network of The Netherlands contains around 30,000 km of asbestos cement (AC) pipes, which constitutes around 25% of the total network. As a pipe material, AC has a relatively poor performance, and therefore is a high priority for renewal. To help decide an effective order of replacement, the water utilities need condition assessment techniques that help them determine which pipes have the highest risk of failure. In the presented work, X-ray computed tomography (CT) was used to measure the degradation of AC pipes taken out of the field. These scans provide a description of the pipe degradation with unmatched detail. The results are compared with strength tests performed on the same pipes, revealing that detailed knowledge of the complete pipe degradation is more important than previously assumed. Moreover, comparison of the CT results to those of a commercial, non-destructive inspection technique was used as a new avenue for validation of this technique, demonstrating its future usefulness for attaining the detailed measurement of pipe degradation required by water utilities.


1989 ◽  
Vol 21 (12) ◽  
pp. 1821-1824
Author(s):  
M. Suzuki ◽  
K. Chihara ◽  
M. Okada ◽  
H. Kawashima ◽  
S. Hoshino

A computer program based on expert system software was developed and proposed as a prototype model for water management to control eutrophication problems in receiving water bodies (Suzuki etal., 1988). The system has several expert functions: 1. data input and estimation of pollution load generated and discharged in the river watershed; 2. estimation of pollution load run-off entering rivers; 3. estimation of water quality of receiving water bodies, such as lakes; and 4. assisting man-machine dialog operation. The program can be used with MS-DOS BASIC and assembler in a 16 bit personal computer. Five spread sheets are utilized in calculation and summation of the pollutant load, using multi-windows. Partial differential equations for an ecological model for simulation of self-purification in shallow rivers and simulation of seasonal variations of water quality in a lake were converted to computer programs and included in the expert system. The simulated results of water quality are shown on the monitor graphically. In this study, the expert system thus developed was used to estimate the present state of one typical polluted river basin. The river was the Katsura, which flows into Lake Sagami, a lake dammed for water supply. Data which had been actually measured were compared with the simulated water quality data, and good agreement was found. This type of expert system is expected to be useful for water management of a closed water body.


1998 ◽  
Vol 38 (11) ◽  
pp. 87-95
Author(s):  
R. Fenz ◽  
M. Zessner ◽  
N. Kreuzinger ◽  
H. Kroiss

In Austria approximately 70% of the population is connected to sewerage and to biological waste water treatment plants. Whereas the urban areas are already provided with these facilities to a very high extent, effort is still needed in rural areas to meet the requirements of the Austrian legislation. The way, this task should be solved has provoked much controversy. It is mainly the question, whether centralised or decentralised sewage disposal systems are preferable from the ecological and economical point of view, that became a political issue during the last 5 years. The Institute for Water Quality and Waste Management was asked to elaborate a waste water management concept for the Lainsitz River Basin, a mainly rural area in the north of Austria discharging to the Elbe river. Both ecological and economical aspects should be considered. This paper presents the methodology that was applied and the criteria which were decisive for the selection of the final solution.


2018 ◽  
Vol 7 (3.14) ◽  
pp. 187
Author(s):  
Rahmah Elfithri ◽  
Mazlin Mokhtar ◽  
Mat Pauzi Abdullah ◽  
Mohd Raihan Taha ◽  
Mohd Ekhwan Toriman ◽  
...  

The study on Watershed Sustainability Index (WSI) has been conducted to analyst the environmental condition in the area incorporating ecological baseline and socio-economic conditions. WSI is an integrated indicator based on basin Hydrology, Environment, Life and Policy (HELP) state condition. It is suitable to be applied in the Langat River Basin in Malaysia which has similar catchment area (up to 2,350 km2) and is one of the UNESCO HELP River Basin since 2004. The WSI analysis which uses a pressure–state–response function based on basin HELP Indicator was done for Langat River Basin by using relevant available 5 years data for the period of 2009 to 2013. It is found that Langat River Basin is having WSI value of 0.68 which falls under the category of medium sustainability (between 0.5-0.8). Based on the maximum value (i.e. 1) or high sustainability (i.e. WSI value more than 0.8) it can be said that Langat is in the good side in term of sustainability. Few management aspects need to be improved and maintained well to be more sustainable. The assessment provides Langat River Basin with more information that is crucial in managing the basin through the adoption of UNESCO’s HELP Framework.   


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1446
Author(s):  
Min Wang ◽  
Xi Chen ◽  
Ayetiguli Sidike ◽  
Liangzhong Cao ◽  
Philippe DeMaeyer ◽  
...  

Water users in the Amudarya River Basin in Uzbekistan are suffering severe water use competition and uneven water allocation, which seriously threatens ecosystems, as shown, for example, in the well-known Aral Sea catastrophe. This study explores the optimized water allocation schemes in the study area at the provincial level under different incoming flow levels, based on the current water distribution quotas among riparian nations, which are usually ignored in related research. The optimization model of the inexact two-stage stochastic programming method is used, which is characterized by probability distributions and interval values. Results show that (1) water allocation is redistributed among five different sectors. Livestock, industrial, and municipality have the highest water allocation priority, and water competition mainly exists in the other two sectors of irrigation and ecology; (2) water allocation is redistributed among six different provinces, and allocated water only in Bukhara and Khorezm can satisfy the upper bound of water demand; (3) the ecological sector can receive a guaranteed water allocation of 8.237–12.354 km3; (4) under high incoming flow level, compared with the actual water distribution, the total allocated water of four sectors (except for ecology) is reduced by 3.706 km3 and total economic benefits are increased by USD 3.885B.


Sign in / Sign up

Export Citation Format

Share Document