scholarly journals Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models

2021 ◽  
Author(s):  
Anna Małka

AbstractThis work aims to prepare a reliable landslide susceptibility model and to analyse the factors contributing to landslides in a dynamic environment by considering the city of Gdynia, Poland as a case study. Geological, geomorphological, hydrological, hydrogeological, and anthropogenic predisposing factors are considered using geographic information systems. Ground types at different depths (1 m and 4 m b.g.l.) are used in the statistical susceptibility assessment for the first time. Landslide susceptibility maps are developed using two techniques in presenting landslides, 13 conditioning factors, and three statistical methods: landslide index, weight of evidence, and logistic regression. The considered factors have an influence on mass movement formation, but their roles are different. Many of these passive factors are interrelated and some of them are also related to active factors, i.e. triggers. Consideration of many thematic layers in the statistical approach allows for the selection of the most appropriate geo-environmental variables. The most significant conditioning factors that affect the likelihood of landsliding include land use and land cover as well as topography. The susceptibility maps generated by the index model and many interrelated passive factors appear to be over-predicted. The logistic regression model and only independent controlling factors (slope angle, slope aspect, and lithology) are sufficient to compile a reliable susceptibility map of Gdynia. Prediction rate curve plots show that the susceptibility map produced using logistic regression exhibits the highest prediction accuracy. The results emphasize the need to check independence in the selection of instability factors and the use of an independent subset of landslides for validation.

2021 ◽  
Vol 33 ◽  
Author(s):  
Mohammed El-Fengour ◽  
Hanifa El Motaki ◽  
Aissa El Bouzidi

This study aimed to assess landslide susceptibility in the Sahla watershed in northern Morocco. Landslides hazard is the most frequent phenomenon in this part of the state due to its mountainous precarious environment. The abundance of rainfall makes this area suffer mass movements led to a notable adverse impact on the nearby settlements and infrastructures. There were 93 identified landslide scars. Landslide inventories were collected from Google Earth image interpretations. They were prepared out of landslide events in the past, and future landslide occurrence was predicted by correlating landslide predisposing factors. In this paper, landslide inventories are divided into two groups, one for landslide training and the other for validation. The Landslide Susceptibility Map (LSM) is prepared by Logistic Regression (LR) Statistical Method. Lithology, stream density, land use, slope curvature, elevation, topographic wetness index, slope aspect, and slope angle were used as conditioning factors. The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) was employed to examine the performance of the model. In the analysis, the LR model results in 96% accuracy in the AUC. The LSM consists of the predicted landslide area. Hence it can be used to reduce the potential hazard linked with the landslides in the Sahla watershed area in Rif Mountains in northern Morocco.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1402 ◽  
Author(s):  
Nohani ◽  
Moharrami ◽  
Sharafi ◽  
Khosravi ◽  
Pradhan ◽  
...  

Landslides are the most frequent phenomenon in the northern part of Iran, which cause considerable financial and life damages every year. One of the most widely used approaches to reduce these damages is preparing a landslide susceptibility map (LSM) using suitable methods and selecting the proper conditioning factors. The current study is aimed at comparing four bivariate models, namely the frequency ratio (FR), Shannon entropy (SE), weights of evidence (WoE), and evidential belief function (EBF), for a LSM of Klijanrestagh Watershed, Iran. Firstly, 109 locations of landslides were obtained from field surveys and interpretation of aerial photographs. Then, the locations were categorized into two groups of 70% (74 locations) and 30% (35 locations), randomly, for modeling and validation processes, respectively. Then, 10 conditioning factors of slope aspect, curvature, elevation, distance from fault, lithology, normalized difference vegetation index (NDVI), distance from the river, distance from the road, the slope angle, and land use were determined to construct the spatial database. From the results of multicollinearity, it was concluded that no collinearity existed between the 10 considered conditioning factors in the occurrence of landslides. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used for validation of the four achieved LSMs. The AUC results introduced the success rates of 0.8, 0.86, 0.84, and 0.85 for EBF, WoE, SE, and FR, respectively. Also, they indicated that the rates of prediction were 0.84, 0.83, 0.82, and 0.79 for WoE, FR, SE, and EBF, respectively. Therefore, the WoE model, having the highest AUC, was the most accurate method among the four implemented methods in identifying the regions at risk of future landslides in the study area. The outcomes of this research are useful and essential for the government, planners, decision makers, researchers, and general land-use planners in the study area.


2021 ◽  
Author(s):  
Md. Sharafat Chowdhury ◽  
Bibi Hafsa

Abstract This study attempts to produce Landslide Susceptibility Map for Chattagram District of Bangladesh by using five GIS based bivariate statistical models, namely the Frequency Ratio (FR), Shanon’s Entropy (SE), Weight of Evidence (WofE), Information Value (IV) and Certainty Factor (CF). A secondary landslide inventory database was used to correlate the previous landslides with the landslide conditioning factors. Sixteen landslide conditioning factors of Slope Aspect, Slope Angle, Geology, Elevation, Plan Curvature, Profile Curvature, General Curvature, Topographic Wetness Index, Stream Power Index, Sediment Transport Index, Topographic Roughness Index, Distance to Stream, Distance to Anticline, Distance to Fault, Distance to Road and NDVI were used. The Area Under Curve (AUC) was used for validation of the LSMs. The predictive rate of AUC for FR, SE, WofE, IV and CF were 76.11%, 70.11%, 78.93%, 76.57% and 80.43% respectively. CF model indicates 15.04% of areas are highly susceptible to landslide. All the models showed that the high elevated areas are more susceptible to landslide where the low-lying river basin areas have a low probability of landslide occurrence. The findings of this research will contribute to land use planning, management and hazard mitigation of the CHT region.


Author(s):  
Desire Kubwimana ◽  
Lahsen Ait Brahim ◽  
Abdellah Abdelouafi

As in other hilly and mountainous regions of the world, the hillslopes of Bujumbura are prone to landslides. In this area, landslides impact human lives and infrastructures. Despite the high landslide-induced damages, slope instabilities are less investigated. The aim of this research is to assess the landslide susceptibility using a probabilistic/statistical data modeling approach for predicting the initiation of future landslides. A spatial landslide inventory with their physical characteristics through interpretation of high-resolution optic imageries/aerial photos and intensive fieldwork are carried out. Base on in-depth field knowledge and green literature, let’s select potential landslide conditioning factors. A landslide inventory map with 568 landslides is produced. Out of the total of 568 landslide sites, 50 % of the data taken before the 2000s is used for training and the remaining 50 % (post-2000 events) were used for validation purposes. A landslide susceptibility map with an efficiency of 76 % to predict future slope failures is generated. The main landslides controlling factors in ascendant order are the density of drainage networks, the land use/cover, the lithology, the fault density, the slope angle, the curvature, the elevation, and the slope aspect. The causes of landslides support former regional studies which state that in the region, landslides are related to the geology with the high rapid weathering process in tropical environments, topography, and geodynamics. The susceptibility map will be a powerful decision-making tool for drawing up appropriate development plans in the hillslopes of Bujumbura with high demographic exposure. Such an approach will make it possible to mitigate the socio-economic impacts due to these land instabilities


2013 ◽  
Vol 13 (1) ◽  
pp. 28-40

A methodology for landslide susceptibility assessment to delineate landslide prone areas is presented using factor analysis and fuzzy membership functions and Geographic Information Systems (GIS). A landslide inventory of 51 landslides was created in the mountainous part of Xanthi prefecture (North Greece) and the associated conditioning factors were determined for each landslide by field work. Six conditioning factors were evaluated: slope angle, slope aspect, land use, geology, distance to faults and topographical elevation. Fuzzy membership functions were defined for each factor using the landslide frequency data. Factor analysis provided weights (i.e., importance for landslide occurrences) for each one of the above conditioning factors, indicating the most important factors as geology and slope angle. An overlay and index method was adopted to produce the landslide susceptibility map. In this map 96% of the observed landslides are located in very high and high susceptibility zones, indicating a suitable approach for landslide susceptibility mapping.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 884 ◽  
Author(s):  
Tingyu Zhang ◽  
Ling Han ◽  
Wei Chen ◽  
Himan Shahabi

The main purpose of the present study is to apply three classification models, namely, the index of entropy (IOE) model, the logistic regression (LR) model, and the support vector machine (SVM) model by radial basis function (RBF), to produce landslide susceptibility maps for the Fugu County of Shaanxi Province, China. Firstly, landslide locations were extracted from field investigation and aerial photographs, and a total of 194 landslide polygons were transformed into points to produce a landslide inventory map. Secondly, the landslide points were randomly split into two groups (70/30) for training and validation purposes, respectively. Then, 10 landslide explanatory variables, such as slope aspect, slope angle, altitude, lithology, mean annual precipitation, distance to roads, distance to rivers, distance to faults, land use, and normalized difference vegetation index (NDVI), were selected and the potential multicollinearity problems between these factors were detected by the Pearson Correlation Coefficient (PCC), the variance inflation factor (VIF), and tolerance (TOL). Subsequently, the landslide susceptibility maps for the study region were obtained using the IOE model, the LR–IOE, and the SVM–IOE model. Finally, the performance of these three models was verified and compared using the receiver operating characteristics (ROC) curve. The success rate results showed that the LR–IOE model has the highest accuracy (90.11%), followed by the IOE model (87.43%) and the SVM–IOE model (86.53%). Similarly, the AUC values also showed that the prediction accuracy expresses a similar result, with the LR–IOE model having the highest accuracy (81.84%), followed by the IOE model (76.86%) and the SVM–IOE model (76.61%). Thus, the landslide susceptibility map (LSM) for the study region can provide an effective reference for the Fugu County government to properly address land planning and mitigate landslide risk.


2019 ◽  
Vol 19 (5) ◽  
pp. 999-1022 ◽  
Author(s):  
Sajid Ali ◽  
Peter Biermanns ◽  
Rashid Haider ◽  
Klaus Reicherter

Abstract. The Karakoram Highway (KKH) is an important route, which connects northern Pakistan with Western China. Presence of steep slopes, active faults and seismic zones, sheared rock mass, and torrential rainfall make the study area a unique geohazards laboratory. Since its construction, landslides constitute an appreciable threat, having blocked the KKH several times. Therefore, landslide susceptibility mapping was carried out in this study to support highway authorities in maintaining smooth and hazard-free travelling. Geological and geomorphological data were collected and processed using a geographic information system (GIS) environment. Different conditioning and triggering factors for landslide occurrences were considered for preparation of the susceptibility map. These factors include lithology, seismicity, rainfall intensity, faults, elevation, slope angle, aspect, curvature, land cover and hydrology. According to spatial and statistical analyses, active faults, seismicity and slope angle mainly control the spatial distribution of landslides. Each controlling parameter was assigned a numerical weight by utilizing the analytic hierarchy process (AHP) method. Additionally, the weighted overlay method (WOL) was employed to determine landslide susceptibility indices. As a result, the landslide susceptibility map was produced. In the map, the KKH was subdivided into four different susceptibility zones. Some sections of the highway fall into high to very high susceptibility zones. According to results, active faults, slope gradient, seismicity and lithology have a strong influence on landslide events. Credibility of the map was validated by landslide density analysis (LDA) and receiver operator characteristics (ROC), yielding a predictive accuracy of 72 %, which is rated as satisfactory by previous researchers.


2020 ◽  
Author(s):  
Suman Das

<p>Himalayan Terrain is highly susceptible to landslide events triggered by frequent earthquakes and heavy rainfall. In the recent past, cloud burst events are on rising, causing massive loss of life and property, mainly attributed to climate change and extensive anthropogenic activities in the mountain region as experienced in case of 2013 Kedarnath Tragedy. The study aimed to identify the potential landslide hazard zone in Mandakini valley by utilizing different types of data including Survey of India toposheet, geological (lithological and structural) maps, IRS-1D, LISS IV multispectral and PAN satellite sensor data and field observations. Relevant 18 thematic layers pertaining to the causative factors for landslide occurrences, such as slope, aspect, relative relief, lithology, tectonic structures, lineaments, LULC, NDVI, distance to drainage, drainage density and anthropogenic factors like distance to road, have been generated using remote sensing images, field survey, ancillary data and GIS techniques.  A detailed landslide susceptibility map was produced using a logistic regression method with datasets developed in GIS. which has further been categorized into four landslide susceptibility zones from high to very low. Finally, the receiver operating characteristic (ROC) curve was used to evaluate the accuracy of the logistic regression analysis model. ROC curve analysis showing an accuracy of 87.3 % for an independent set of test samples. The result also showed a strong agreement between the distribution of existing landslides and predicted landslide susceptibility zones. Consequently, this study could serve as an effective guide for further land-use planning and for the implementation of development.</p>


2013 ◽  
Vol 13 (12) ◽  
pp. 3339-3355 ◽  
Author(s):  
M. C. Mărgărint ◽  
A. Grozavu ◽  
C. V. Patriche

Abstract. In landslide susceptibility assessment, an important issue is the correct identification of significant contributing factors, which leads to the improvement of predictions regarding this type of geomorphologic processes. In the scientific literature, different weightings are assigned to these factors, but contain large variations. This study aims to identify the spatial variability and range of variation for the coefficients of landslide predictors in different geographical conditions. Four sectors of 15 km × 15 km (225 km2) were selected for analysis from representative regions in Romania in terms of spatial extent of landslides, situated both on the hilly areas (the Transylvanian Plateau and Moldavian Plateau) and lower mountain region (Subcarpathians). The following factors were taken into consideration: elevation, slope angle, slope height, terrain curvature (mean, plan and profile), distance from drainage network, slope aspect, land use, and lithology. For each sector, landslide inventory, digital elevation model and thematic layers of the mentioned predictors were achieved and integrated in a georeferenced environment. The logistic regression was applied separately for the four study sectors as the statistical method for assessing terrain landsliding susceptibility. Maps of landslide susceptibility were produced, the values of which were classified by using the natural breaks method (Jenks). The accuracy of the logistic regression outcomes was evaluated using the ROC (receiver operating characteristic) curve and AUC (area under the curve) parameter, which show values between 0.852 and 0.922 for training samples, and between 0.851 and 0.940 for validation samples. The values of coefficients are generally confined within the limits specified by the scientific literature. In each sector, landslide susceptibility is essentially related to some specific predictors, such as the slope angle, land use, slope height, and lithology. The study points out that the coefficients assigned to the landslide predictors through logistic regression are capable to reveal some important characteristics in landslide manifestation. The study also shows that the logistic regression could be an alternative method to the current Romanian methodology for landslide susceptibility and hazard mapping.


2013 ◽  
Vol 353-356 ◽  
pp. 3487-3493 ◽  
Author(s):  
Chen Chao Xiao ◽  
Yuan Tian ◽  
Kang Ping Si ◽  
Ting Li

In this paper landslide susceptibility mapping and model performance assessment was conducted using three models, logistic regression, GAM, and SVM, in a study area in Shenzhen, China. Ten factors, slope angle, aspect, elevation, plan and profile curvature of the slope, lithology, NDVI, building density, the distance to the river, and the distance to the fault were selected as influencing factors for the landslide occurrences. All three models were trained and the resulting susceptibility maps were created. The performances of the three models were then assessed by AUC values through a 10-fold cross-validation. It could be concluded that in the study area GAM had the best overall performance among the three models, while SVM was better than logistic regression. Based on the derived DPR values, the optimum thresholds between stable areas and risky areas for all three models were also determined.


Sign in / Sign up

Export Citation Format

Share Document