scholarly journals Using Remote Sensing Based Metrics to Quantify the Hydrological Response in a City

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1763 ◽  
Author(s):  
Charlotte Wirion ◽  
Willy Bauwens ◽  
Boud Verbeiren

We propose a remote-sensing based metric approach to evaluate the hydrological response of highly urbanized areas and apply it to the city of Brussels. The model is set-up using 2 m resolution hyperspectral data. Next, it is upscaled to the city level, using multi-spectral Sentinel-2 data with 20 m resolution. We identify the total impervious area, the vegetation cover and the leaf area index as important metrics to derive a timeseries of spatially distributed net rainfall, runoff and infiltration from rainfall data. For the estimation of the actual evapotranspiration we use the potential evapotranspiration and the available water storage based on the interception, the depression storage and the infiltration. Additionally, we route the runoff to the outlet of selected sub-catchments. An important metric for the routing is the timing to the outlet which is approximated using the total impervious area and the hydrological distance to the outlet. We compare our approach to WetSpa model simulations and reach R 2 values of 98% for net rainfall, 95% for surface runoff, 99% for infiltration and 97% for cumulative evapotranspiration. The routing in the Watermaelbeek catchment is evaluated with discharge observations and reaches NSE values of 0.89 at a 2 m resolution and 0.88 at a 20 m resolution using an hourly timestep. At the timestep of 10 min and a 20 m resolution the NSE is reduced to 0.76. For the Roodebeek catchment we reach an NSE of 0.73 at a spatial resolution of 20 m and an hourly timestep. The results presented in this paper are optimistic for using spatial and temporal metrics retrieved from remote sensing data to quantify the water balance of urban catchments.

2021 ◽  
Vol 13 (8) ◽  
pp. 1443
Author(s):  
Maria Angela Dissegna ◽  
Tiangang Yin ◽  
Hao Wu ◽  
Nicolas Lauret ◽  
Shanshan Wei ◽  
...  

The microclimatic conditions of the urban environment influence significantly the thermal comfort of human beings. One of the main human biometeorology parameters of thermal comfort is the Mean Radiant Temperature (Tmrt), which quantifies effective radiative flux reaching a human body. Simulation tools have proven useful to analyze the radiative behavior of an urban space and its impact on the inhabitants. We present a new method to produce detailed modeling of Tmrt spatial distribution using the 3-D Discrete Anisotropic Radiation Transfer model (DART). Our approach is capable to simulate Tmrt at different scales and under a range of parameters including the urban pattern, surface material of ground, walls, roofs, and properties of the vegetation (coverage, shape, spectral signature, Leaf Area Index and Leaf Area Density). The main advantages of our method are found in (1) the fine treatment of radiation in both short-wave and long-wave domains, (2) detailed specification of optical properties of urban surface materials and of vegetation, (3) precise representation of the vegetation component, and (4) capability to assimilate 3-D inputs derived from multisource remote sensing data. We illustrate and provide a first evaluation of the method in Singapore, a tropical city experiencing strong Urban Heat Island effect (UHI) and seeking to enhance the outdoor thermal comfort. The comparison between DART modelled and field estimated Tmrt shows good agreement in our study site under clear-sky condition over a time period from 10:00 to 19:00 (R2 = 0.9697, RMSE = 3.3249). The use of a 3-D radiative transfer model shows promising capability to study urban microclimate and outdoor thermal comfort with increasing landscape details, and to build linkage to remote sensing data. Our methodology has the potential to contribute towards optimizing climate-sensitive urban design when combined with the appropriate tools.


2021 ◽  
Vol 13 (6) ◽  
pp. 1131
Author(s):  
Tao Yu ◽  
Pengju Liu ◽  
Qiang Zhang ◽  
Yi Ren ◽  
Jingning Yao

Detecting forest degradation from satellite observation data is of great significance in revealing the process of decreasing forest quality and giving a better understanding of regional or global carbon emissions and their feedbacks with climate changes. In this paper, a quick and applicable approach was developed for monitoring forest degradation in the Three-North Forest Shelterbelt in China from multi-scale remote sensing data. Firstly, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Ratio Vegetation Index (RVI), Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation (FPAR) and Net Primary Production (NPP) from remote sensing data were selected as the indicators to describe forest degradation. Then multi-scale forest degradation maps were obtained by adopting a new classification method using time series MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper Plus (ETM+) images, and were validated with ground survey data. At last, the criteria and indicators for monitoring forest degradation from remote sensing data were discussed, and the uncertainly of the method was analyzed. Results of this paper indicated that multi-scale remote sensing data have great potential in detecting regional forest degradation.


2012 ◽  
Vol 518-523 ◽  
pp. 5697-5703
Author(s):  
Zhao Yan Liu ◽  
Ling Ling Ma ◽  
Ling Li Tang ◽  
Yong Gang Qian

The aim of this study is to assess the capability of estimating Leaf Area Index (LAI) from high spatial resolution multi-angular Vis-NIR remote sensing data of WiDAS (Wide-Angle Infrared Dual-mode Line/Area Array Scanner) imaging system by inverting the coupled radiative transfer models PROSPECT-SAILH. Based on simulations from SAILH canopy reflectance model and PROSPECT leaf optical properties model, a Look-up Table (LUT) which describes the relationship between multi-angular canopy reflectance and LAI has been produced. Then the LAI can be retrieved from LUT by directly matching canopy reflectance of six view directions and four spectral bands with LAI. The inversion results are validated by field data, and by comparing the retrieval results of single-angular remote sensing data with multi-angular remote sensing data, we can found that the view angle takes the obvious impact on the LAI retrieval of single-angular data and that high accurate LAI can be obtained from the high resolution multi-angular remote sensing technology.


1999 ◽  
Vol 12 (3) ◽  
pp. 210-220 ◽  
Author(s):  
Takashi ISHII ◽  
Makoto NASHIMOTO ◽  
Hisashi SHIMOGAKI

2021 ◽  
Vol 25 (6) ◽  
pp. 61-67
Author(s):  
I.V. Zen’kov ◽  
Trinh Le Hung ◽  
Yu.P. Yuronen ◽  
P.M. Kondrashov ◽  
A.A. Latyntsev ◽  
...  

A brief description of the industrial and logistics center operating in the city of Novorossiysk on the coast of the Tsemesskaya Bay in the Black Sea is presented. According to remote sensing data, the area of open pit mining of rock dumps dumped during the development of three marl deposits for use at four cement plants was determined. According to the results of satellite imagery and analytical calculations, downward trends in changes in the density of vegetation cover in territories with natural landscapes adjacent to the territory of industrial facilities located on the coast of the Tsemesskaya Bay were revealed.


2019 ◽  
Vol 11 (6) ◽  
pp. 671 ◽  
Author(s):  
Roshanak Darvishzadeh ◽  
Tiejun Wang ◽  
Andrew Skidmore ◽  
Anton Vrieling ◽  
Brian O’Connor ◽  
...  

The Sentinel satellite fleet of the Copernicus Programme offers new potential to map and monitor plant traits at fine spatial and temporal resolutions. Among these traits, leaf area index (LAI) is a crucial indicator of vegetation growth and an essential variable in biodiversity studies. Numerous studies have shown that the radiative transfer approach has been a successful method to retrieve LAI from remote-sensing data. However, the suitability and adaptability of this approach largely depend on the type of remote-sensing data, vegetation cover and the ecosystem studied. Saltmarshes are important wetland ecosystems threatened by sea level rise among other human- and animal-induced changes. Therefore, monitoring their vegetation status is crucial for their conservation, yet few LAI assessments exist for these ecosystems. In this study, the retrieval of LAI in a saltmarsh ecosystem is examined using Sentinel-2 and RapidEye data through inversion of the PROSAIL radiative transfer model. Field measurements of LAI and some other plant traits were obtained during two succeeding field campaigns in July 2015 and 2016 on the saltmarsh of Schiermonnikoog, a barrier island of the Netherlands. RapidEye (2015) and Sentinel-2 (2016) data were acquired concurrent to the time of the field campaigns. The broadly employed PROSAIL model was inverted using two look-up tables (LUTs) generated in the spectral band’s settings of the two sensors and in which each contained 500,000 records. Different solutions from the LUTs, as well as, different Sentinel-2 spectral subsets were considered to examine the LAI retrieval. Our results showed that generally the LAI retrieved from Sentinel-2 had higher accuracy compared to RapidEye-retrieved LAI. Utilising the mean of the first 10 best solutions from the LUTs resulted in higher R2 (0.51 and 0.59) and lower normalised root means square error (NRMSE) (0.24 and 0.16) for both RapidEye and Sentinel-2 data respectively. Among different Sentinel-2 spectral subsets, the one comprised of the four near-infrared (NIR) and shortwave infrared (SWIR) spectral bands resulted in higher estimation accuracy (R2 = 0.44, NRMSE = 0.21) in comparison to using other studied spectral subsets. The results demonstrated the feasibility of broadband multispectral sensors, particularly Sentinel-2 for retrieval of LAI in the saltmarsh ecosystem via inversion of PROSAIL. Our results highlight the importance of proper parameterisation of radiative transfer models and capacity of Sentinel-2 spectral range and resolution, with impending high-quality global observation aptitude, for retrieval of plant traits at a global scale.


Sign in / Sign up

Export Citation Format

Share Document