scholarly journals Nonstationary Flood Hazard Analysis in Response to Climate Change and Population Growth

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1811 ◽  
Author(s):  
Lei Yan ◽  
Lingqi Li ◽  
Pengtao Yan ◽  
Hongmou He ◽  
Jing Li ◽  
...  

The predictions of flood hazard over the design life of a hydrological project are of great importance for hydrological engineering design under the changing environment. The concept of a nonstationary flood hazard has been formulated by extending the geometric distribution to account for time-varying exceedance probabilities over the design life of a project. However, to our knowledge, only time covariate is used to estimate the nonstationary flood hazard over the lifespan of a project, which lacks physical meaning and may lead to unreasonable results. In this study, we aim to strengthen the physical meaning of nonstationary flood hazard analysis by investigating the impacts of climate change and population growth. For this purpose, two physical covariates, i.e., rainfall and population, are introduced to improve the characterization of nonstationary frequency over a given design lifespan. The annual maximum flood series of Xijiang River (increasing trend) and Weihe River (decreasing trend) are chosen as illustrations, respectively. The results indicated that: (1) the explanatory power of population and rainfall is better than time covariate in the study areas; (2) the nonstationary models with physical covariates possess more appropriate statistical parameters and thus are able to provide more reasonable estimates of a nonstationary flood hazard; and (3) the confidences intervals of nonstationary design flood can be greatly reduced by employing physical covariates. Therefore, nonstationary flood design and hazard analysis with physical covariates are recommended in changing environments.

2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Ana Heryana ◽  
Dwi Setyawan ◽  
Budhi Setiawan ◽  
Dadang Hikmah Purnama

Author(s):  
Conrad Wasko ◽  
Seth Westra ◽  
Rory Nathan ◽  
Harriet G. Orr ◽  
Gabriele Villarini ◽  
...  

Research into potential implications of climate change on flood hazard has made significant progress over the past decade, yet efforts to translate this research into practical guidance for flood estimation remain in their infancy. In this commentary, we address the question: how best can practical flood guidance be modified to incorporate the additional uncertainty due to climate change? We begin by summarizing the physical causes of changes in flooding and then discuss common methods of design flood estimation in the context of uncertainty. We find that although climate science operates across aleatory, epistemic and deep uncertainty, engineering practitioners generally only address aleatory uncertainty associated with natural variability through standards-based approaches. A review of existing literature and flood guidance reveals that although research efforts in hydrology do not always reflect the methods used in flood estimation, significant progress has been made with many jurisdictions around the world now incorporating climate change in their flood guidance. We conclude that the deep uncertainty that climate change brings signals a need to shift towards more flexible design and planning approaches, and future research effort should focus on providing information that supports the range of flood estimation methods used in practice. This article is part of a discussion meeting issue ‘Intensification of short-duration rainfall extremes and implications for flash flood risks'.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2687
Author(s):  
Yuzuo Xie ◽  
Shenglian Guo ◽  
Lihua Xiong ◽  
Jing Tian ◽  
Feng Xiong

The hydrologic data series are nonstationary due to climate change and local anthropogenic activities. The existing nonstationary design flood estimation methods usually focus on the statistical nonstationarity of the flow data series in the catchment, which neglect the hydraulic approach, such as reservoir flood regulation. In this paper, a novel approach to comprehensively consider the driving factors of non-stationarities in design flood estimation is proposed, which involves three main steps: (1) implementation of the candidate predictors with trend tests and change point detection for preliminary analysis; (2) application of the nonstationary flood frequency analysis with the principle of Equivalent Reliability (ER) for design flood volumes; (3) development of a nonstationary most likely regional composition (NS-MLRC) method, and the estimation of a design flood hydrograph at downstream cascade reservoirs. The proposed framework is applied to the cascade reservoirs in the Han River, China. The results imply that: (1) the NS-MLRC method provides a much better explanation for the nonstationary spatial correlation of the flood events in Han River basin, and the multiple nonstationary driving forces can be precisely quantified by the proposed design flood estimation framework; (2) the impacts of climate change and population growth are long-lasting processes with significant risk of flood events compared with stationary distribution conditions; and (3) the swift effects of cascade reservoirs are reflected in design flood hydrographs with lower peaks and lesser volumes. This study can provide a more integrated template for downstream flood risk management under the impact of climate change and human activities.


2020 ◽  
Vol 64 (12) ◽  
pp. 2019-2032
Author(s):  
Sibylle Stoeckli ◽  
Raphael Felber ◽  
Tim Haye

Abstract Climate change can alter the habitat suitability of invasive species and promote their establishment. The highly polyphagous brown marmorated stinkbug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), is native to East Asia and invasive in Europe and North America, damaging a wide variety of fruit and vegetable crops. In Switzerland, crop damage and increasing populations have been observed since 2017 and related to increasing temperatures. We studied the climatic suitability, population growth, and the number of generations under present and future climate conditions for H. halys in Switzerland, using a modified version of the bioclimatic model package CLIMEX. To address the high topographic variability in Switzerland, model simulations were based on climate data of high spatial resolution (approx. 2 km), which significantly increased their explanatory power, and identified many more climatically suitable areas in comparison to previous models. The validation of the CLIMEX model using observational records collected in a citizen science initiative between 2004 and 2019 revealed that more than 15 years after its accidental introduction, H. halys has colonised nearly all bioclimatic suitable areas in Switzerland and there is limited potential for range expansion into new areas under present climate conditions. Simulations with climate change scenarios suggest an extensive range expansion into higher altitudes, an increase in generations per year, an earlier start of H. halys activity in spring and a prolonged period for nymphs to complete development in autumn. A permanent shift from one to two generations per year and the associated population growth of H. halys may result in increasing crop damages in Switzerland. These results highlight the need for monitoring the spread and population development in the north-western part of Switzerland and higher altitudes of the valleys of the south.


2016 ◽  
Vol 49 (8) ◽  
pp. 719-729
Author(s):  
Hyunseung Lee ◽  
Taesam Lee ◽  
Taewoong Park ◽  
Chanyoung Son

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1601
Author(s):  
Radu Drobot ◽  
Aurelian Florentin Draghia ◽  
Daniel Ciuiu ◽  
Romică Trandafir

The Design Flood (DF) concept is an essential tool in designing hydraulic works, defining reservoir operation programs, and identifying reliable flood hazard maps. The purpose of this paper is to present a methodology for deriving a Design Flood hydrograph considering the epistemic uncertainty. Several appropriately identified statistical distributions allow for the acceptable approximation of the frequent values of maximum discharges or flood volumes, and display a significant spread for their medium/low Probabilities of Exceedance (PE). The referred scattering, as a consequence of epistemic uncertainty, defines an area of uncertainty for both recorded data and extrapolated values. In considering the upper and lower values of the uncertainty intervals as limits for maximum discharges and flood volumes, and by further combining them compatibly, a set of DFs as completely defined hydrographs with different shapes result for each PE. The herein proposed procedure defines both uni-modal and multi-modal DFs. Subsequently, such DFs help water managers in examining and establishing tailored approaches for a variety of input hydrographs, which might be typically generated in river basins.


2021 ◽  
Vol 18 (4) ◽  
pp. 257-274
Author(s):  
T. T. A. Le ◽  
N. T. Lan-Anh ◽  
V. Daskali ◽  
B. Verbist ◽  
K. C. Vu ◽  
...  

Author(s):  
Brian Stiber ◽  
Asfaw Beyene

Climate change, drought, population growth and increased energy and water costs are all forces driving exploration into alternative, sustainable resources. The abundance of untapped wave energy often presents an opportunity for research into exploiting this resource to meet the energy and water needs of populated coastal regions. This paper investigates the potential and impact of harnessing wave energy for the purpose of seawater desalination. First the SWAN wave modeling software was used to evaluate the size and character of the wave resource. These data are used to estimate the cost of water for wave-powered desalination taking a specific region as a case example. The results indicate that, although the cost of water from this technology is not economically competitive at this time, the large available resource confirms the viability of significantly supplementing current freshwater supplies. The results also confirm that research into the feasibility of wave power as a source of energy and water in the area is warranted, particularly as water and energy become more scarce and expensive coinciding with the maturity of commercial wave energy conversion.


Sign in / Sign up

Export Citation Format

Share Document