scholarly journals Impact of Human Activities and Natural Processes on the Seasonal Variability of River Water Quality in Two Watersheds in Lampung, Indonesia

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2363
Author(s):  
Rahmah Dewi Yustika ◽  
Hiroaki Somura ◽  
Slamet Budi Yuwono ◽  
Tsugiyuki Masunaga

This study identified seasonal water quality characteristics in two adjacent mountainous rivers (Sangharus and Sekampung Hulu Rivers) in Lampung, Indonesia and determined the impacts of fertilizer application on river chemistry as a result of social forestry management. In 2016, we measured water chemistry and conducted a farmers’ questionnaire survey to obtain information on fertilizer application. The water quality results indicated that several parameters, including nitrate (NO3) and phosphate (PO4), were significantly higher in the Sangharus River than in the Sekampung Hulu River. In addition, several parameters were influenced by dilution from high river flow in the rainy season. Some parameters were likely influenced by the weathering of parent materials. By contrast, electrical conductivity (EC) and NO3 were higher in the rainy season, which was likely linked to the dominant timing of urea fertilizer application during this season. Despite the application of fertilizers in the watersheds, NO3 levels remained below the recommended standard. However, aluminum and iron concentrations were higher than the recommended level for drinking water, which was likely due to elevated soil erosion from improper land management. Therefore, we recommend that effective land management policies be implemented through the adoption of soil conservation practices for nutrient loss prevention.

2021 ◽  
Author(s):  
◽  
Martha Trodahl

<p>Over the last 50 years freshwater and marine environments have become severely impaired due to contamination from pathogens, heavy metals, sediment, industrial chemicals and nutrients (MEA 2005b). In many countries, including New Zealand, increased nitrogen (N) and phosphorus (P) loading to terrestrial and freshwater environments from diffuse nutrient sources are of particular concern (MEA 2005a; PCE 2015b; Steffen et al. 2015) and many governments now mandate control of diffuse nutrient loss to water. Water quality models are invaluable tools that can assist with decision making around this widespread issue through exploration of the current situation and future scenarios.  Many water quality models exist, functioning at a variety of temporal and spatial scales and varying in detail and complexity. However, few, if any, simultaneously represent sub-field to catchment scale processes and outcomes, both of which are required to fully address water quality issues associated with diffuse nutrient sources. Those that do, likely require extensive time and expertise to operate. Water quality models embedded in the Land Utilisation and Capability Indicator (LUCI), an ecosystem service decision support framework, offer the opportunity to overcome these limitations. Being highly spatially explicit, yet straightforward to use, they can inform and assist individual land owners, catchment managers and other stakeholders with planning, decision making and management of water quality at sub-field to landscape scale.  To model diffuse nutrient losses LUCI, like many catchment scale water quality models, requires some form of estimated nutrient loss, or export coefficient, from land units within the catchment of interest. To be representative export coefficients must consider climate, soil, topography, and land cover and management variables. A number of methods of export coefficient derivation exist, although generally they consider only very limited geo-climatic, land cover and land management variables.  The principal aim of this study is development of algorithms capable of calculating New Zealand site specific N and P export coefficients from detailed geo-climatic, land cover and land management variables, for application in LUCI water quality models. Algorithms for pastoral land cover are developed from a large dataset comprising real pastoral farm input and output data from nutrient budgeting model OVERSEER. Algorithms are extended to land covers other than pasture, albeit in a limited manner. This is achieved through rescaling of the pastoral algorithms to account for relative differences in literature reported N and P losses from pasture and a variety of other New Zealand land covers. Application of the developed algorithms in LUCI water quality models results in positioning of export coefficients at the DEM grid square scale (≤ 15 m x 15 m for New Zealand). In addition, intra-basin configuration is considered in LUCI, at the same grid square scale, as water and nutrient flows are cascaded through the catchment. Application of the export coefficient calculating algorithms are applied to two contrasting New Zealand catchments. Tuapaka catchment, an 85ha agricultural foothill catchment in Manawatu, North Island, and Lake Rotorua catchment, a 502 km2 volcanic, mixed land cover catchment in Bay of Plenty, North Island.  This research is supported by Ravensdown, a farmer owned co-operative, which plans to use LUCI extensively to advise and assist farmers with water quality issues. The ability to model mitigation strategies in LUCI is an important capability. Therefore, this research also includes a review of five particularly important on-farm mitigation strategies, which will later be used by the wider LUCI development team to assist with better parameterisation and improved performance of mitigation options in LUCI.  Application of the developed algorithms at farm to catchment scale in LUCI results in considerably more nuanced, detailed maps and data showing N and P sources and pathways, compared to LUCI’s previously used ‘one export coefficient per land cover’ approach. Although results indicate absolute nutrient loss values are not always ‘correct’ compared to either OVERSEER predictions or in-stream water quality measurements, these differences appear comparable to those seen with similar water quality models. In addition, the issue of representativeness of OVERSEER predictions and in-stream water quality measurements exists.  Nevertheless improvement to absolute predictions is always an aim. This research indicates further improvements to LUCI water quality predictions could result from refinement of both pastoral and other land cover algorithms, and from improved representation of attenuation processes in LUCI, including groundwater representation. However, lack of measured on-land and in-stream N and P loss data is a major challenge to both algorithm refinement and to evaluation of results. In addition, more detailed spatial data would provide more nuanced results from algorithm application.  Although the algorithm application context in this research is LUCI water quality models applied in New Zealand, this does not preclude application of the developed algorithms in other export coefficient based, catchment scale water quality models. Using spatial data pertaining to climate, soil, topographic and land management variables, land units of combined variables can be identified and the algorithms applied, resulting in explicitly positioned export coefficients that can be fed into the catchment scale water quality model of interest. Therefore, developments made here potentially represent a wider contribution to catchment scale modelling using export coefficients.</p>


2020 ◽  
Author(s):  
Camilla Negri ◽  
Miriam Glendell ◽  
Nick Schurch ◽  
Andrew J. Wade ◽  
Per-Erik Mellander

&lt;p&gt;Diffuse pollution of phosphorus (P) from agriculture is a major pressure on water quality in Ireland. The Agricultural Catchments Programme (ACP) was initiated to evaluate the Good Agricultural Practice measures implemented under the EU Nitrates Directive. Within the ACP, extensive monitoring and research has been made to understand the drivers and controls on nutrient loss in the agricultural landscape. However, tapering P pollution in agricultural catchments also requires informed decisions about the likely effectiveness of measures as well as their spatial targeting.&amp;#160; There is a need to develop Decision Support Tools (DST) that can account for the uncertainty inherently present in both data and water quality models.&lt;/p&gt;&lt;p&gt;Bayesian Belief Networks (BBNs) are probabilistic graphical models that allow the integration of both quantitative and qualitative information from different sources (experimental data, model outputs and expert opinion) all in one model. Moreover, these models can be easily updated with new knowledge and can be applied with scarce datasets. BBNs have previously been used in multiple decision-making settings to understand causal relationships in different contexts. Recently, BBNs were used to support ecological risk-based decision making.&lt;/p&gt;&lt;p&gt;In this study, a prototype BBN was implemented with the Genie software to develop a DST for understanding the influence of land management and P pollution risk in four ACP catchments dominated by intensively farmed land with contrasting hydrology and land use. In the fist stage of the study, the spatial BBN was constructed visualising the &amp;#8216;source-mobilisation-transport-continuum&amp;#8217;, identifying the main drivers of P pollution based on previous findings from the ACP catchments. A second step involved the consultation of experts and stakeholders through a series of workshops aimed at eliciting their input. These stakeholders have expertise ranging from hydrology and hydrochemistry, land management and farm consulting, to policy and environmental modelling.&lt;/p&gt;&lt;p&gt;At present, the BBN is being parameterized for a 12km&lt;sup&gt;2&lt;/sup&gt; catchment with mostly grassland on poorly drained soils, using a high temporal and spatial resolution dataset that includes hydro-chemo-metrics, mapped soil properties (drainage class and Soil Morgan P), landscape characteristics (i.e. land use and management, presence of mitigation measures and presence of point pollution sources). Preliminary results show that the model captures the difference in P loss risk between catchments, probably caused by contrasting hydrological characteristics and soil P sources.&lt;/p&gt;&lt;p&gt;Future research will be focussed on parameterizing and testing the BBN in three other ACP catchments. Such parametrization will be pivotal to testing the model in data sparse catchments and possibly upscaling the tool to regional and national scale. Moreover, climate change and land use change modelled scenarios will be crucial to inform targeting of mitigation measures. &amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
◽  
Martha Trodahl

<p>Over the last 50 years freshwater and marine environments have become severely impaired due to contamination from pathogens, heavy metals, sediment, industrial chemicals and nutrients (MEA 2005b). In many countries, including New Zealand, increased nitrogen (N) and phosphorus (P) loading to terrestrial and freshwater environments from diffuse nutrient sources are of particular concern (MEA 2005a; PCE 2015b; Steffen et al. 2015) and many governments now mandate control of diffuse nutrient loss to water. Water quality models are invaluable tools that can assist with decision making around this widespread issue through exploration of the current situation and future scenarios.  Many water quality models exist, functioning at a variety of temporal and spatial scales and varying in detail and complexity. However, few, if any, simultaneously represent sub-field to catchment scale processes and outcomes, both of which are required to fully address water quality issues associated with diffuse nutrient sources. Those that do, likely require extensive time and expertise to operate. Water quality models embedded in the Land Utilisation and Capability Indicator (LUCI), an ecosystem service decision support framework, offer the opportunity to overcome these limitations. Being highly spatially explicit, yet straightforward to use, they can inform and assist individual land owners, catchment managers and other stakeholders with planning, decision making and management of water quality at sub-field to landscape scale.  To model diffuse nutrient losses LUCI, like many catchment scale water quality models, requires some form of estimated nutrient loss, or export coefficient, from land units within the catchment of interest. To be representative export coefficients must consider climate, soil, topography, and land cover and management variables. A number of methods of export coefficient derivation exist, although generally they consider only very limited geo-climatic, land cover and land management variables.  The principal aim of this study is development of algorithms capable of calculating New Zealand site specific N and P export coefficients from detailed geo-climatic, land cover and land management variables, for application in LUCI water quality models. Algorithms for pastoral land cover are developed from a large dataset comprising real pastoral farm input and output data from nutrient budgeting model OVERSEER. Algorithms are extended to land covers other than pasture, albeit in a limited manner. This is achieved through rescaling of the pastoral algorithms to account for relative differences in literature reported N and P losses from pasture and a variety of other New Zealand land covers. Application of the developed algorithms in LUCI water quality models results in positioning of export coefficients at the DEM grid square scale (≤ 15 m x 15 m for New Zealand). In addition, intra-basin configuration is considered in LUCI, at the same grid square scale, as water and nutrient flows are cascaded through the catchment. Application of the export coefficient calculating algorithms are applied to two contrasting New Zealand catchments. Tuapaka catchment, an 85ha agricultural foothill catchment in Manawatu, North Island, and Lake Rotorua catchment, a 502 km2 volcanic, mixed land cover catchment in Bay of Plenty, North Island.  This research is supported by Ravensdown, a farmer owned co-operative, which plans to use LUCI extensively to advise and assist farmers with water quality issues. The ability to model mitigation strategies in LUCI is an important capability. Therefore, this research also includes a review of five particularly important on-farm mitigation strategies, which will later be used by the wider LUCI development team to assist with better parameterisation and improved performance of mitigation options in LUCI.  Application of the developed algorithms at farm to catchment scale in LUCI results in considerably more nuanced, detailed maps and data showing N and P sources and pathways, compared to LUCI’s previously used ‘one export coefficient per land cover’ approach. Although results indicate absolute nutrient loss values are not always ‘correct’ compared to either OVERSEER predictions or in-stream water quality measurements, these differences appear comparable to those seen with similar water quality models. In addition, the issue of representativeness of OVERSEER predictions and in-stream water quality measurements exists.  Nevertheless improvement to absolute predictions is always an aim. This research indicates further improvements to LUCI water quality predictions could result from refinement of both pastoral and other land cover algorithms, and from improved representation of attenuation processes in LUCI, including groundwater representation. However, lack of measured on-land and in-stream N and P loss data is a major challenge to both algorithm refinement and to evaluation of results. In addition, more detailed spatial data would provide more nuanced results from algorithm application.  Although the algorithm application context in this research is LUCI water quality models applied in New Zealand, this does not preclude application of the developed algorithms in other export coefficient based, catchment scale water quality models. Using spatial data pertaining to climate, soil, topographic and land management variables, land units of combined variables can be identified and the algorithms applied, resulting in explicitly positioned export coefficients that can be fed into the catchment scale water quality model of interest. Therefore, developments made here potentially represent a wider contribution to catchment scale modelling using export coefficients.</p>


2014 ◽  
Vol 49 (4) ◽  
pp. 372-385
Author(s):  
Shawn Burdett ◽  
Michael Hulley ◽  
Andy Smith

A hydrologic and water quality model is sought to establish an approach to land management decisions for a Canadian Army training base. Training areas are subjected to high levels of persistent activity creating unique land cover and land-use disturbances. Deforestation, complex road networks, off-road manoeuvres, and vehicle stream crossings are among major anthropogenic activities observed to affect these landscapes. Expanding, preserving and improving the quality of these areas to host training activities for future generations is critical to maintain operational effectiveness. Inclusive to this objective is minimizing resultant environmental degradation, principally in the form of hydrologic fluctuations, excess erosion, and sedimentation of aquatic environments. Application of the Soil Water Assessment Tool (SWAT) was assessed for its ability to simulate hydrologic and water quality conditions observed in military landscapes at 5th Canadian Division Support Base (5 CDSB) Gagetown, New Brunswick. Despite some limitations, this model adequately simulated three partial years of daily watershed outflow (NSE = 0.47–0.79, R2 = 0.50–0.88) and adequately predicted suspended sediment yields during the observation periods (%d = 6–47%) for one highly disturbed sub-watershed in Gagetown. Further development of this model may help guide decisions to develop or decommission training areas, guide land management practices and prioritize select landscape mitigation efforts.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 308
Author(s):  
Kristen Almen ◽  
Xinhua Jia ◽  
Thomas DeSutter ◽  
Thomas Scherer ◽  
Minglian Lin

The potential impact of controlled drainage (CD), which limits drainage outflow, and subirrigation (SI), which provides supplemental water through drain tile, on surface water quality are not well known in the Red River Valley (RRV). In this study, water samples were collected and analyzed for chemical concentrations from a tile-drained field that also has controlled drainage and subirrigation modes in the RRV of southeastern North Dakota from 2012–2018. A decreasing trend in overall nutrient load loss was observed because of reduced drainage outflow, though some chemical concentrations were found to be above the recommended surface water quality standards in this region. For example, sulfate was recommended to be below 750 mg/L but was reported at a mean value of 1971 mg/L during spring free drainage. The chemical composition of the subirrigation water was shown to have an impact on drainage water and the soil, specifically on salinity-related parameters, and the impact varied between years. This variation largely depended on the amount of subirrigation applied, soil moisture, and soil properties. Overall, the results of this study show the benefits of controlled drainage on nutrient loss reduction from agricultural fields.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Sung Kim ◽  
Seok Hyun Ahn ◽  
In Jae Jeong ◽  
Tae Kwon Lee

AbstractThe metacommunity approach provides insights into how the biological communities are assembled along the environmental variations. The current study presents the importance of water quality on the metacommunity structure of algal communities in six river-connected lakes using long-term (8 years) monitoring datasets. Elements of metacommunity structure were analyzed to evaluate whether water quality structured the metacommunity across biogeographic regions in the riverine ecosystem. The algal community in all lakes was found to exhibit Clementsian or quasi-Clementsian structure properties such as significant turnover, grouped and species sorting indicating that the communities responded to the environmental gradient. Reciprocal averaging clearly classified the lakes into three clusters according to the geographical region in river flow (upstream, midstream, and downstream). The dispersal patterns of algal genera, including Aulacoseira, Cyclotella, Stephanodiscus, and Chlamydomonas across the regions also supported the spatial-based classification results. Although conductivity, chemical oxygen demand, and biological oxygen demand were found to be important variables (loading > |0.5|) of the entire algal community assembly, water temperature was a critical factor in water quality associated with community assembly in each geographical area. These results support the notion that the structure of algal communities is strongly associated with water quality, but the relative importance of variables in structuring algal communities differed by geological regions.


2009 ◽  
Vol 24 (5) ◽  
pp. 889-908 ◽  
Author(s):  
Yongyong Zhang ◽  
Jun Xia ◽  
Tao Liang ◽  
Quanxi Shao

2011 ◽  
Vol 383-390 ◽  
pp. 2430-2436
Author(s):  
Jian Hua Hou ◽  
Min Quan Feng ◽  
Xiao Peng Xing ◽  
Zhen Hua Hou

The purpose of this paper is to find the pollution diffusion regularity near sewage outlet area of Yuncheng reach of the Fen River. A 2-D water hydrodynamic and quality model was used to simulate flow field, the water quality and contamination dispersion. The parameters of the model were calibrated with measured data of the water depth, flow and water quality in Yuncheng reach of the Fen River. According to the simulated result, the total area of pollution belt with 19 sewage outlets is 8.89km2 in normal year. And 3.89% of the reach has a worse water quality than V class in standard. The percentage of V and Ⅳ Class of water is 69.17% and 26.94%.In dry year, the total area of pollution belt with 19 sewage outlets is 8.89km2.The percentage of inferior V, V and Ⅳ Class of water is 27.80%, 69.46% and 2.74%. It was shown by the simulated results that the concentration gradient decreases with increasing distance to the outlets and the dilution and dispersion of pollutants was enhanced by a greater river flow.


Sign in / Sign up

Export Citation Format

Share Document