scholarly journals Multi-Satellite Data of Land Surface Temperature, Lakes Area, and Water Level for Hydrological Model Calibration and Validation in the Yangtze River Basin

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2621
Author(s):  
Chiara Corbari ◽  
Claire Huber ◽  
Hervè Yesou ◽  
Ying Huang ◽  
Zhongbo Su ◽  
...  

This study shows the feasibility of the combined use of multi-satellite data and an energy–water balance model for improving the estimates of water fluxes over time and distributed in space in the Yangtze River basin. In particular, a new methodology is used to constrain an internal model variable of the distributed hydrological model based on the satellite land surface temperature. The hydrological FEST-EWB model (flash flood event-based spatially distributed rainfall–runoff transformation–energy water balance model) with its energy–water balance scheme allows to continuously compute in time and distributed in space soil moisture and evapotranspiration (ET) fluxes thanks to a double link with satellite-derived data as input parameters (e.g., LAI) and as variables for model states’ updates as the land surface temperature (LST). This LST was used to calibrate the model soil parameters instead of using only dedicated ground measurements. The effects of the calibration procedure were evaluated at four available river cross-sections along the Yangtze River, considering also the presence of the Three Gorges Dam. Flow duration curves were also considered to understand the volume storages’ changes. The Poyang and Dongting Lakes dynamics were simulated from FEST-EWB and compared against satellite water extended from MERIS and ASAR data and water levels from LEGOS altimetry data (Topex/Poseidon). The FEST-EWB model was run at 0.009° spatial resolution and three hours of temporal resolutions for the period between 2003 and 2006. Absolute errors on LST estimates of 3 °C were obtained while discharge data were simulated with errors of 10%. Errors on the water area extent of 7% and on the water level of 3% were obtained for the two lakes.

2016 ◽  
Vol 47 (S1) ◽  
pp. 8-23 ◽  
Author(s):  
Dan Zhang ◽  
Qi Zhang ◽  
Adrian D. Werner ◽  
Renying Gu

This study investigates the water balance of the Yangtze River Basin (YRB) during 2003–2012 using the Tropical Rainfall Measuring Mission precipitation, the Moderate Resolution Imaging Spectroradiometer evapotranspiration and the Gravity Recovery and Climate Experiment total water storage change. The bias, absolute error and correlation coefficient are used to quantify water balance performances at monthly and annual time steps. The results show that the absolute error in the YRB water balance was 18.1 mm/month and 152.5 mm/yr at monthly and annual time steps accounting for 20% and 14% of YRB precipitation, respectively. The three satellite products were combined through a water balance equation to estimate monthly and annual stream flow, which was in error by 19.4 mm/month and 76.7 mm/yr, accounting for 22% and 7% of YRB precipitation, respectively. Trends in YRB water balance components at annual time steps obtained from satellite products were in the range 83–318% of the corresponding trends from alternative datasets (e.g., ground-based measurements, land-surface modelling, etc.), which performed significantly better than monthly time series. The results indicate that the YRB water balance can be evaluated using multiple satellite products to a reasonable accuracy at annual time steps.


2020 ◽  
Vol 12 (20) ◽  
pp. 8388
Author(s):  
Juchao Zhao ◽  
Shaohua Zhang ◽  
Kun Yang ◽  
Yanhui Zhu ◽  
Yuling Ma

The rapid development of industrialization and urbanization has resulted in a large amount of carbon dioxide (CO2) emissions, which are closely related to the long-term stability of urban surface temperature and the sustainable development of cities in the future. However, there is still a lack of research on the temporal and spatial changes of CO2 emissions in long-term series and their relationship with land surface temperature. In this study, Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) data, Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) composite data, energy consumption statistics data and nighttime land surface temperature are selected to realize the spatial informatization of long-term series CO2 emissions in the Yangtze River Delta region, which reveals the spatial and temporal dynamic characteristics of CO2 emissions, spatial autocorrelation distribution patterns and their impacts on nighttime land surface temperature. According to the results, CO2 emissions in the Yangtze River Delta region show an obvious upward trend from 2000 to 2017, with an average annual growth rate of 6.26%, but the growth rate is gradually slowing down. In terms of spatial distribution, the CO2 emissions in that region have significant regional differences. Shanghai, Suzhou and their neighboring cities are the main distribution areas with high CO2 emissions and obvious patch distribution patterns. From the perspective of spatial trend, the areas whose CO2 emissions are of significant growth, relatively significant growth and extremely significant growth account for 8.78%, 4.84% and 0.58%, respectively, with a spatial pattern of increase in the east and no big change in the west. From the perspective of spatial autocorrelation, the global spatial autocorrelation index of CO2 emissions in the Yangtze River Delta region in the past 18 years has been greater than 0.66 (p < 0.01), which displays significant positive spatial autocorrelation characteristics, and the spatial agglomeration degree of CO2 emissions continues to increase from 2000 to 2010. From 2000 to 2017, the nighttime land surface temperature in that region showed a warming trend, and the areas where CO2 emissions are positively correlated with nighttime land surface temperature account for 88.98%. The increased CO2 emissions lead to, to a large extent, the rise of nighttime land surface temperature. The research results have important theoretical and practical significance for the Yangtze River Delta region to formulate a regional emission reduction strategy.


2010 ◽  
Vol 14 (10) ◽  
pp. 2141-2151 ◽  
Author(s):  
C. Corbari ◽  
J. A. Sobrino ◽  
M. Mancini ◽  
V. Hidalgo

Abstract. Land surface temperature is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance. This paper analyses the representativeness of land surface temperature (LST) for a distributed hydrological water balance model (FEST-EWB) using LST from AHS (airborne hyperspectral scanner), with a spatial resolution between 2–4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the representative equilibrium temperature that closes the energy balance equation in the distributed hydrological model. Diurnal and nocturnal images are analyzed due to the non stable behaviour of the thermodynamic temperature and to the non linear effects induced by spatial heterogeneity. Spatial autocorrelation and scale of fluctuation of land surface temperature from FEST-EWB and AHS are analysed at different aggregation areas to better understand the scale of representativeness of land surface temperature in a hydrological process. The study site is the agricultural area of Barrax (Spain) that is a heterogeneous area with a patchwork of irrigated and non irrigated vegetated fields and bare soil. The used data set was collected during a field campaign from 10 to 15 July 2005 in the framework of the SEN2FLEX project.


2012 ◽  
Vol 599 ◽  
pp. 159-167
Author(s):  
Xiang Bao ◽  
Guang Wen Ma ◽  
Ye Yao Wang

For the purpose of estimating the amount of nitrogen (N) added to the agroecosystem by human activities in the Yangtze River Basin, and analyzing temporal and spatial changes of N budget in the Yangtze River Basin from 1990 to 2000. Following the mass balance model, a complete N budget was established for the Yangtze River Basin. N input sources include inorganic fertilizer, atmospheric deposition, biological fixation, excrement as fertilizer, crop residue used as fertilizer and combustion of crop residue. N output sources include crop harvesting, denitrification of soil nitrate, and NH3 volatilization. The budget had been calculated as the difference between all inputs and outputs. The total N input was 13.03 Tg N and 17.71 Tg N in 1990 and 2000, respectively. The total N output was 6.83 Tg N in 1990 and 8.76 Tg N in 2000, respectively. The N budget was 6.20 Tg N in 1990 and 8.95 Tg N in 2000 in agricultural fields of the Yangtze River Basin.


2010 ◽  
Vol 7 (4) ◽  
pp. 5335-5368 ◽  
Author(s):  
C. Corbari ◽  
J. A. Sobrino ◽  
M. Mancini ◽  
V. Hidalgo

Abstract. Land surface temperature is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance. This paper analyses the representativeness of land surface temperature (LST) for a distributed hydrological water balance model (FEST-EWB) using LST from AHS (airborne hyperspectral scanner), with a spatial resolution between 2–4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the representative equilibrium temperature that closes the energy balance equation in the distributed hydrological model. Diurnal and nocturnal images are analyzed due to the non stable behaviour of the thermodynamic temperature and to the non linear effects induced by spatial heterogeneity. Spatial autocorrelation and scale of fluctuation of land surface temperature from FEST-EWB and AHS are analysed at different aggregation areas to better understand the scale of representativeness of land surface temperature in an hydrological process. The study site is the agricultural area of Barrax (Spain) that is a heterogeneous area with an alternation of irrigated and non irrigated vegetated field and bare soil. The used data set was collected during a field campaign from 10 to 15 July 2005 in the framework of the SEN2FLEX project.


Sign in / Sign up

Export Citation Format

Share Document