scholarly journals Degradation of Micropollutants by UV–Chlorine Treatment in Reclaimed Water: pH Effects, Formation of Disinfectant Byproducts, and Toxicity Assay

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2639 ◽  
Author(s):  
Chi Wang ◽  
Zhian Ying ◽  
Ming Ma ◽  
Mingxin Huo ◽  
Wu Yang

The utilization of reclaimed water is a reliable and sustainable approach to enhance water supply in water-deficient cities. However, the presence of micro-organic pollutants (MPs) in reclaimed water has potential adverse effects on aquatic ecosystems and human health. In this study, we investigated the occurrence of 12 target MPs in the influent and reclaimed water collected from a local wastewater treatment plant, and the ultraviolet (UV)–chlorine process was applied to analyze its ability to remove MPs. The results showed that all 12 MPs were detected in both the influent and the reclaimed water, with the concentrations ranging from 25.5 to 238 ng/L and 8.6 to 42.5 ng/L, respectively. Over 52% of all the target MPs were readily degraded by the UV–chlorine process, and the removal efficiency was 7.7% to 64.2% higher than the corresponding removal efficiency by chlorination or UV irradiation only. The degradation efficiency increased with the increasing initial chlorine concentration. The pH value had a slight influence on the MP degradation and exhibited different trends for different MPs. The formation of known disinfectant byproducts (DBPs) during the UV–chlorine process was 33.8% to 68.4% of that in the chlorination process, but the DBPs’ formation potentials were 1.3 to 2.2 times higher. The toxicity assay indicated that UV–chlorine can effectively reduce the toxicity of reclaimed water.

1995 ◽  
Vol 31 (12) ◽  
pp. 171-183 ◽  
Author(s):  
M. M. Saqqar ◽  
M. B. Pescod

The performance of the primary anaerobic pond at the Alsamra Wastewater Treatment Plant in Jordan was monitored over 48 months. Overall averages for the removal efficiencies of BOD5, COD and suspended solids were 53%, 53% and 74%, respectively. An improvement in removal efficiency with increase in pond water temperature was demonstrated. A model, which takes into account the variability of raw wastewater at different locations, has been developed to describe the performance of a primary anaerobic pond in terms of a settleability ratio for the raw wastewater. The model has been verified by illustrating the high correlation between actual and predicted pond performance.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


2000 ◽  
Vol 41 (1) ◽  
pp. 57-63 ◽  
Author(s):  
S. Vandaele ◽  
C. Thoeye ◽  
B. Van Eygen ◽  
G. De Gueldre

In Flanders (Belgium) an estimated 15% of the population will never be connected to a central wastewater treatment plant (WWTP). Small WWTPs can be a valuable option. Aquafin bases the decision to build SWWTPs on a drainage area study. To realise an accelerated construction the process choice is made accordingly to a standard matrix, which represents the different technologies in function of the size and the effluent consents. A pilot scale constructed two-stage reed bed is used to optimise the concept of the reed beds. The concept consists of a primary clarifier, two parallel vertical flow reed beds followed by a sub-surface flow reed bed. The removal efficiency of organic pollutants is high (COD: 89%, BOD: 98%). Phosphorus removal is high at the start-up but diminishes throughout the testing period (from 100% to 71% retention after 7 months). Nitrogen removal amounts to 53% on average. Nitrification is complete in summer. Denitrification appears to be the limiting factor. In autumn leakage of nitrogen is assumed. Removal efficiency of pathogens amounts to almost 99%. Clogging forms a substantial constraint of the vertical flow reed bed. Problems appear to be related with presettlement, feed interval and geotextile.


2020 ◽  
Vol 5 (1) ◽  
pp. 72
Author(s):  
Rizka Dwi Apriliani

<strong>Abstract. </strong>PT. Jababeka Infrastruktur is a subsidiary company of PT. Jababeka Tbk., as estate manager. One of the PT. Jababeka Infrastruktur duty is manage Wastewater Treatment Plant 2 (WWTP2). The most of incoming wastewater in WWTP2 PT. Jababeka Infrastruktur is came from food industries, whereas has potential degradable to fatty acid and caused the pH tend to be low and fluctuates. pH is one of the important parameters, especially in biological wastewater treatment system as applied in WWTP2. pH value can affect the microorganism performance in decompose the pollutant compound in wastewater. pH control action is needed to make the treatment run better. <strong>Objectives:</strong> To know the primary settling tank (PST) with   ̴3 hours detention time performance in equalizing wastewater pH. To develop the new equalization tank, it was provide an analysis the pH inlet performance by measuring pH of wastewater. <strong>Method and results:</strong> Statistical analysis of secondary data by comparing standard deviation value of wastewater before and after accommodated in PST also paired sample t-Test to see the performance of PST in equalizing of pH. Besides that, taken and measuring inlet wastewater pH in every one hour also adding to the previous wastewater inlet sample to determine the optimum wastewater detention time in terms of pH. <strong>Conclusion:</strong> PST was significant unit process that can be equalize the pH value. The observation of pH characteristic pattern by time showed that the optimum equalization time was 1-2 hours. This result can be as reference to more utilize of the existing PST.


Sign in / Sign up

Export Citation Format

Share Document