scholarly journals Evaluating Bank-Filtration Occurrence in the Province of Quebec (Canada) with a GIS Approach

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 662 ◽  
Author(s):  
Marc Patenaude ◽  
Paul Baudron ◽  
Laurence Labelle ◽  
Janie Masse-Dufresne

Due to the abundance of surface water in the province of Quebec, Canada, it is suspected that many groundwater wells are pumping a mixture of groundwater and surface water via induced bank filtration (IBF). The regulatory framework in Quebec provides comprehensive guidelines for the development and monitoring of surface water and groundwater drinking water production systems. However, the regulations do not specifically address hybrid groundwater-surface water production systems such as IBF sites. More knowledge on the use of IBF in the province is needed to adjust the regulations with respect to the particularities of these systems. In order to provide a first evaluation of municipal wells potentially using IBF and the corresponding population served by these wells, a Geographic Information Science framework (GISc) was used to implement an IBF spatial database and calculate the distance from each well to the nearest surface water body. GISc is based on open source GIS programs and openly available data, to facilitate the reproducibility of the work. From this provincial scale approach, we show that nearly one million people are supplied by groundwater from municipal wells located <500 m from a surface water body, and half a million have a significant probability to be supplied by IBF wells. A more focused look at the watershed scale distribution of wells allows us to improve our interpretations by considering the aquifer type and other regional factors. This approach reveals strong spatial variability in the distribution of wells in proximity to surface water. Of the three selected regions, one has a high potential for IBF (Laurentides), one requires additional information do draw precise conclusions (Nicolet), and the third region (Vaudreuil-Soulanges) is unlikely to have widespread use of IBF. With this study, we demonstrate that extensive use of IBF is likely and that there is a need for improved understanding and management of these sites in order to properly protect the drinking water supply.

1994 ◽  
Vol 30 (10) ◽  
pp. 221-227 ◽  
Author(s):  
Jordi Martín-Alonso

The Llobregat is a 156 km long river, which supplies 35% of the Barcelona's drinking water needs from the Sant Joan Despí Water Treatment Plant. Since the establishment of the Salt Mine Works in the Llobregat basin in 1923, a progressive salinization of the water sources has been recorded. The operation of the Brine Collector, as a public work carried out by Aigües de Barcelona (AGBAR), started in 1989; it enabled a very significant improvement in the quality of the surface water used for drinking-water production.


Author(s):  
Malik R. Abbas ◽  
Mahir Mahmod Hason ◽  
Baharin Bin Ahmad ◽  
Abd Wahid Bin Rasib ◽  
Talib R. Abbas

2005 ◽  
Vol 38 (5) ◽  
pp. 399-410 ◽  
Author(s):  
A. Gandhe ◽  
V. Venkateswarlu ◽  
R. N. Gupta

1995 ◽  
Vol 16 (8) ◽  
pp. 1495-1502 ◽  
Author(s):  
B. S. DAYA SAGAR ◽  
G. GANDHI ◽  
B. S. PRAKASA RAG

2021 ◽  
Vol 13 (1) ◽  
pp. 1290-1302
Author(s):  
Ruimeng Wang ◽  
Li Pan ◽  
Wenhui Niu ◽  
Rumeng Li ◽  
Xiaoyang Zhao ◽  
...  

Abstract Xiaolangdi Reservoir is a key control project to control the water and sediment in the lower Yellow River, and a timely and accurate grasp of the reservoir’s water storage status is essential for the function of the reservoir. This study used all available Landsat images (789 scenes) and adopted the modified normalized difference water index, enhanced vegetation index, and normalized difference vegetation index to map the surface water from 1999 to 2019 in Google Earth Engine (GEE) cloud platform. The spatiotemporal characteristics of the surface water body area changes in the Xiaolangdi Reservoir in the past 21 years are analyzed from the water body type division, area change, type conversion, and the driving force of the Xiaolangdi water body area changes was analyzed. The results showed that (1) the overall accuracy of the water body extraction method was 98.86%, and the kappa coefficient was 0.96; (2) the maximum water body area of the Xiaolangdi Reservoir varies greatly between inter-annual and intra-annual, and seasonal water body and permanent water body have uneven spatiotemporal distribution; (3) in the conversion of water body types, the increased seasonal water body area of the Xiaolangdi Reservoir from 1999 to 2019 was mainly formed by the conversion of permanent water body, and the reduced permanent water body area was mainly caused by non-water conversion; and (4) the change of the water body area of the Xiaolangdi Reservoir has a weak negative correlation with natural factors such as precipitation and temperature, and population. It is positively correlated with seven indicators such as runoff and regional gross domestic product (GDP). The findings of the research will provide necessary data support for the management and planning of soil and water resources in the Xiaolangdi Reservoir.


2019 ◽  
Author(s):  
Robert Reinecke ◽  
Laura Foglia ◽  
Steffen Mehl ◽  
Jonathan D. Herman ◽  
Alexander Wachholz ◽  
...  

Abstract. In global hydrological models, groundwater storages and flows are generally simulated by linear reservoir models. Recently, the first global gradient-based groundwater models were developed in order to improve the representation of groundwater-surface water interactions, capillary rise, lateral flows and human water use impacts. However, the reliability of model outputs is limited by a lack of data as well as model assumptions required due to the necessarily coarse spatial resolution. The impact of data quality is presented by showing the sensitivity of a groundwater model to changes in the only available global hydraulic conductivity data-set. To better understand the sensitivity of model output to uncertain spatially distributed parameter inputs, we present the first application of a global sensitivity method for a global-scale groundwater model using nearly 2000 steady-state model runs of the global gradient-based groundwater model G3M. By applying the Morris method in a novel domain decomposition approach that identifies global hydrological response units, spatially distributed parameter sensitivities are determined for a computationally expensive model. Results indicate that globally simulated hydraulic heads are equally sensitive to hydraulic conductivity, groundwater recharge and surface water body elevation, though parameter sensitivities vary regionally. For large areas of the globe, rivers are simulated to be either losing or gaining, depending on the parameter combination, indicating a high uncertainty of simulating the direction of flow between the two compartments. Mountainous and dry regions show a high variance in simulated head due to numerical difficulties of the model, limiting the reliability of computed sensitivities in these regions. This instability is likely caused by the uncertainty in surface water body elevation. We conclude that maps of spatially distributed sensitivities can help to understand complex behaviour of models that incorporate data with varying spatial uncertainties. The findings support the selection of possible calibration parameters and help to anticipate challenges for a transient coupling of the model.


2009 ◽  
Vol 2 (2) ◽  
pp. 101-126 ◽  
Author(s):  
T. Grischek ◽  
D. Schoenheinz ◽  
C. Syhre ◽  
K. Saupe

Abstract. Bank filtration has been of main importance for the drinking water supply in Germany for many decades. The water quality of pumped raw water from bank filtration sites depends to a high degree on the water quality of the infiltrating surface water and the landside groundwater, the mixing portion of both as well as the flow and transport conditions in the aquifer. Since the improvement of river water quality and a drastic decrease in water demand during the last 15 years in Germany, the influence of landside groundwater quality has become more important for the raw water quality of waterworks relying on bank filtration. The hydrogeologic analysis of three bank filtration sites in Saxony and the management of abstraction rates and well operation in response to fluctuating water demand are discussed. In conclusion, a general overview on management options for bank filtration sites is provided.


Sign in / Sign up

Export Citation Format

Share Document