scholarly journals Fluid-Structure Interaction Response of a Water Conveyance System with a Surge Chamber during Water Hammer

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1025 ◽  
Author(s):  
Qiang Guo ◽  
Jianxu Zhou ◽  
Yongfa Li ◽  
Xiaolin Guan ◽  
Daohua Liu ◽  
...  

Fluid–structure interaction (FSI) is a frequent and unstable inherent phenomenon in water conveyance systems. Especially in a system with a surge chamber, valve closing and the subsequent water level oscillation in the surge chamber are the excitation source of the hydraulic transient process. Water-hammer-induced FSI has not been considered in preceding research, and the results without FSI justify further investigations. In this study, an FSI eight-equation model is presented to capture its influence. Both the elbow pipe and surge chamber are treated as boundary conditions, and solved using the finite volume method (FVM). After verifying the feasibility of using FVM to solve FSI, friction, Poisson, and junction couplings are discussed in detail to separately reveal the influence of a surge chamber, tow elbows, and a valve on FSI. Results indicated that the major mechanisms of coupling are junction coupling and Poisson coupling. The former occurs in the surge chamber and elbows. Meanwhile, a stronger pressure pulsation is produced at the valve, resulting in a more complex FSI response in the water conveyance system. Poisson coupling and junction coupling are the main factors contributing to a large amount of local transilience emerging on the dynamic pressure curves. Moreover, frictional coupling leads to the lower amplitudes of transilience. These results indicate that the transilience is induced by the water hammer–structure interaction and plays important roles in the orifice optimization in the surge chamber.

2013 ◽  
Vol 444-445 ◽  
pp. 498-504
Author(s):  
Kun Xiong Zhou ◽  
Li Xing Zhang

This paper is concerned with an analytical solution of transient flow on the four-equation model in fluid-structure interaction (FSI) for a reservoir-pipe-vane system subjected to a sudden closure of hydro turbine vane. The analytical solution is derived corresponding to the junction coupling based on a vane motion. The result obtained from the analytical solution is used to analyze the coupling features between pipe transient flow and hydro turbine vane motion.


Author(s):  
Andreas Apostolatos ◽  
Altuğ Emiroğlu ◽  
Shahrokh Shayegan ◽  
Fabien Péan ◽  
Kai-Uwe Bletzinger ◽  
...  

AbstractIn this study the isogeometric B-Rep mortar-based mapping method for geometry models stemming directly from Computer-Aided Design (CAD) is systematically augmented and applied to partitioned Fluid-Structure Interaction (FSI) simulations. Thus, the newly proposed methodology is applied to geometries described by their Boundary Representation (B-Rep) in terms of trimmed multipatch Non-Uniform Rational B-Spline (NURBS) discretizations as standard in modern CAD. The proposed isogeometric B-Rep mortar-based mapping method is herein extended for the transformation of fields between a B-Rep model and a low order discrete surface representation of the geometry which typically results when the Finite Volume Method (FVM) or the Finite Element Method (FEM) are employed. This enables the transformation of such fields as tractions and displacements along the FSI interface when Isogeometric B-Rep Analysis (IBRA) is used for the structural discretization and the FVM is used for the fluid discretization. The latter allows for diverse discretization schemes between the structural and the fluid Boundary Value Problem (BVP), taking into consideration the special properties of each BVP separately while the constraints along the FSI interface are satisfied in an iterative manner within partitioned FSI. The proposed methodology can be exploited in FSI problems with an IBRA structural discretization or to FSI problems with a standard FEM structural discretization in the frame of the Exact Coupling Layer (ECL) where the interface fields are smoothed using the underlying B-Rep parametrization, thus taking advantage of the smoothness that the NURBS basis functions offer. All new developments are systematically investigated and demonstrated by FSI problems with lightweight structures whereby the underlying geometric parametrizations are directly taken from real-world CAD models, thus extending IBRA into coupled problems of the FSI type.


2010 ◽  
Vol 29-32 ◽  
pp. 1458-1463 ◽  
Author(s):  
Jin Yun Liu ◽  
Jian Yun Chen

Three basic types of similar relationship between the prototype and the model for dynamic structural model test and dynamic destructive model test were proposed in corresponding literatures. At the time the situation where various similar relationships are applicable and the technique to ensure similarity for the different goal was discussed. Here the numerical simulation of model test of water-conveyance tunnel concerning fluid-structure interaction in soft soil is studied. Based on economy and practicability of selective material for model test, the similar relationship and the technique are proposed, which are validated through the example. The results of numerical simulation show: under the specific conditions, data of the model test can completely transfer to those of the prototype by use of this type of similar skill, and get more useful information. Some new ideas are introduced to keep the similarity of the hydro-structure structures.


Author(s):  
Jason J. Dale ◽  
A. E. Holdo̸

Numerical modeling of fluid/structure interaction (FSI) falls into the multi-physics domain and has significant importance in many engineering problems. It is an active research area in the field of computational mechanics and examples are found in diverse applications such as aeronautics, biomechanics and the offshore industries. As such, Computational Fluid Dynamics (CFD) and Finite Element (FE) analysis techniques have continuously evolved into this field. This paper presents one such technique and focuses on the further developments of a displacement based finite volume method previously presented by the author, in particular, its ability to now predict fixed displacement, normal, shear and thermal stresses and strains within a single CFD program. An advantage of this method is that a single solution procedure has the potential to be employed to predict both fluid, structural and fluid/structure interaction effects simultaneously.


Author(s):  
Yanbo Huang ◽  
Shanshan Li ◽  
Zhenhai Pan

Abstract Fluid-structure interaction (FSI) is an important fundamental problem with wide scientific and engineering applications. The immersed boundary method has proved to be an effective way to model the interaction between a moving solid and its surrounding fluid. In this study, a novel modeling approach based on the coupled immersed-boundary and finite-volume method is proposed to simulate fluid-structure interaction problems. With this approach, the whole computational domain is treated as fluid and discretized by only one set of Eulerian grids. The computational domain is divided into solid parts and fluid parts. A goal velocity is locally determined in each cell inside the solid part. At the same time, the hydrodynamic force exerted on the solid structure is calculated by integrating along the faces between the solid cells and fluid cells. In this way, the interaction between the solid and fluid is solved explicitly and the costly information transfer between Lagranian grids and Eulerian grids is avoided. The interface is sharply restricted into one single grid width throughout the iterations. The proposed modeling approach is validated by conducting several classic numerical experiments, including flow past static and freely rotatable square cylinders, and sedimentation of an ellipsoid in finite space. Throughout the three numerical experiments, satisfying agreements with literatures have been obtained, which demonstrate that the proposed modeling approach is accurate and robust for simulating FSI problems.


2000 ◽  
Vol 28 (3) ◽  
pp. 140-156 ◽  
Author(s):  
E. Seta ◽  
Y. Nakajima ◽  
T. Kamegawa ◽  
H. Ogawa

Abstract We established the new numerical procedure for hydroplaning. We considered the following three important factors; fluid/structure interaction, tire rolling, and practical tread pattern. The tire was analyzed by the finite element method with Lagrangian formulation, and the fluid was analyzed by the finite volume method with Eulerian formulation. Since the tire and the fluid can be modeled separately and their coupling is computed automatically, the fluid/structure interaction of the complex geometry, such as the tire with the tread pattern, can be analyzed. Since we focused the aim of the simulation on dynamic hydroplaning with thick water films, we ignored the effect of fluid viscosity. We verified the predictability of the hydroplaning simulation in the different parameters such as the water flow, the velocity dependence of hydroplaning, and the effect of the tread pattern on hydroplaning. These parameters could be predicted qualitatively. We also developed the procedure of the global-local analysis to apply the hydroplaning simulation to a practical tire tread pattern design, and we found that the sloped block tip is effective in improving hydroplaning performance.


Sign in / Sign up

Export Citation Format

Share Document