scholarly journals Water and Energy Demand Management in Pressurized Irrigation Networks

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1878 ◽  
Author(s):  
Miguel Ángel Pardo ◽  
Adrián J. Riquelme ◽  
Antonio Jodar-Abellan ◽  
Joaquín Melgarejo

Minimizing energy expenditure is one of the main purposes of the managers of pressurized irrigation systems. From the energy consumption standpoint, they can reduce energy consumption by supplying a constant flow into the system (a scheme different from urban water pressurized networks in which water demands depend on users). Managers can keep energy demands (opening and closing valves) while meeting pressure restrictions. We developed a computer application in MATLAB containing a genetic algorithm to find the best moment to open and to close valves to minimize an objective function which measures the differences between the objective and the real injected flows. We tested this program in the pressurized irrigation network of the San Vicente Campus, University of Alicante (Southeast Spain) and we calculated the water and energy balance (from the later and present irrigation network) and the carbon credits not emitted to the atmosphere.

2014 ◽  
Vol 1073-1076 ◽  
pp. 2457-2461
Author(s):  
Chang Sheng Li ◽  
Qing Ling Li ◽  
Zhong Min Lei ◽  
Han Yang ◽  
Hui Qing Qu

These paper investigated the relationship between economics development and energy demands based on Energy Kuznets Curve (EFC) in China. The results show that, the prospects of economics and energy demand in China in further will undergo three important stages to 2050.The peak of energy demand maybe around 2035 and the corresponding total energy demand maybe amount 5.7 billion tce. In 2035, the GDP per capital maybe about 17000 (2005 US$) and the urbanization will reach a relative high level. It is urgent for China to take actions to curb the increasing total energy consumption.


2012 ◽  
Vol 524-527 ◽  
pp. 3388-3391 ◽  
Author(s):  
Kuo Cheng Kuo ◽  
Chi Ya Chang ◽  
Mei Hui Chen ◽  
Wei Yu Chen

The balance between economic growth and environmental protection has been the core concern of policy makers in developing countries for the past two decades. This study is one of the few studies to empirically inspect the relationship between economic growth, FDI, and energy consumption over the period 1978-2010 in China. The results reveal that there is a unidirectional Granger causality running from GDP to energy consumption. This suggests that increase of GDP will consume more energy and implementing of the energy conservation policies and energy demand management policies in China may not have negative impact on economic growth. Besides, a bi-directional Granger causality has been found between energy consumption and FDI. This implies that Chinese government should cautiously evaluate the positive and negative effects of FDI inflows and put efforts into making more effective control policies on environmental protection.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1440 ◽  
Author(s):  
Jorge García Morillo ◽  
Juan A. Rodríguez Díaz ◽  
Miguel Crespo ◽  
Aonghus McNabola

In Spain and other countries, open channel distribution networks have been replaced by on demand-pressurized networks to improve the water-use efficiency of the water distribution systems, but at the same time the energy requirements have dramatically risen. Under this scenario, methodologies to reduce the energy consumption are critical such as: irrigation network sectoring, critical hydrant detection, improving the efficiency of the pumping system and the irrigation system, or introducing solar energy for water supply. But once these measures are undertaken, the recovery of the energy inherent in excess pressure in the network should be investigated. Hydropower energy recovery in irrigation is still largely unexplored and requires further investigation and demonstration. All of these methodologies should be considered as useful tools for both, the reduction of energy consumption and the recovery of the excess energy in pressurized irrigation networks. To accomplish this, the REDAWN project (Reducing Energy Dependency in Atlantic Area Water Networks) aims to improve the energy efficiency of water networks through the installation of innovative micro-hydropower (MHP) technology. This technology will recover wasted energy in existing pipe networks across irrigation, public water supply, process industry, and waste-water network settings.


World ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 67-89
Author(s):  
Daniel L. Mendoza ◽  
Carlo Bianchi ◽  
Jermy Thomas ◽  
Zahra Ghaemi

The building sector accounts for nearly 40% of total primary energy consumption in the U.S. and E.U. and 20% of worldwide delivered energy consumption. Climate projections predict an increase of average annual temperatures between 1.1–5.4 °C by 2100. As urbanization is expected to continue increasing at a rapid pace, the energy consumption of buildings is likely to play a pivotal role in the overall energy budget. In this study, we used EnergyPlus building energy models to estimate the future energy demands of commercial buildings in Salt Lake County, Utah, USA, using locally-derived climate projections. We found significant variability in the energy demand profiles when simulating the study buildings under different climate scenarios, based on the energy standard the building was designed to meet, with reductions ranging from 10% to 60% in natural gas consumption for heating and increases ranging from 10% to 30% in electricity consumption for cooling. A case study, using projected 2040 building stock, showed a weighted average decrease in heating energy of 25% and an increase of 15% in cooling energy. We also found that building standards between ASHRAE 90.1-2004 and 90.1-2016 play a comparatively smaller role than variation in climate scenarios on the energy demand variability within building types. Our findings underscore the large range of potential future building energy consumption which depends on climatic conditions, as well as building types and standards.


2018 ◽  
Vol 2 (2) ◽  
pp. 53
Author(s):  
Pedro García SanMiguel ◽  
Julian García Muñoz

Abstract Promoting innovation in the construction sector is one of the cornerstones of sustainability, since it is one of the main responsible for GHG emissions. This paper provides a proposal for sustainable housing: the industrialized passive home of American Building System Company (ABS) and its suitability to be incorporated into the construction system. Following the comparative analysis of the energy demands of this model versus an equivalent house which follows the regulations of the CTE. These data will be simulated by the SG SAVE software that perform the energy simulation of the both systems, based on the transmittance values of enclosures and glass and the final tightness of the homes. From these results about the savings in energy consumption, an economic analysis has been carried out and an assessment of the amortization period of the proposed house facing the other. In addition, through the calculation coefficients of equivalent CO2 emissions from the Spanish Ministry of Industry, the reduction of greenhouse gas emissions associated with energy consumption during the use stage has been obtained. Finally, for a standardize comfort conditions, the modelling and the assessment allow us to conclude that the deployment of ABS house in comparison with the conventional Spanish system supposes a reduction of 60% in energy demand, a 90% in CO2 emissions, and an amortization period of 12 years. With all these evidences we should start to think why this system has not been already integrated in the Spanish construction sector. Resumen Fomentar la innovación en el sector de la construcción es una de las piedras angulares de la sostenibilidad, pues la construcción es uno de los sectores responsables de las emisiones de GEI. Este artículo busca ofrecer una propuesta para la construcción sostenible: la vivienda pasiva industrializada de la empresa American Building System (ABS) y su idoneidad para ser incorporada como sistema constructivo tras el análisis comparativo de sus demandas energéticas frente a los de una vivienda equivalente que sigue la normativa del Código Técnico de la Edificación. Estos datos han sido obtenidos a partir del modelado energético de la vivienda a través del software SG SAVE, en función de los valores de transmitancia de cerramientos y vidrios y la estanqueidad final de la vivienda. A partir de estos resultados se ha realizado un análisis económico y se ha calculado el periodo de amortización de la vivienda propuesta frente a la del sistema convencional. Por otro lado, mediante los coeficientes de cálculo de emisiones del Ministerio de Industria Español, ha sido posible estimar la reducción emisiones de CO2 asociadas al consumo de energía durante la etapa de uso como consecuencia de la reducción de demanda energética entre ambas viviendas. Finalmente, para unas condiciones de confort normalizadas, la modelización energética y el análisis de resultados nos permiten concluir que la vivienda ABS en comparación con la vivienda del sistema convencional español nos permite reducir la demanda energética en hasta un 60%, las emisiones de CO2 en hasta un 90%, con un período de amortización de 12 años. Con todas estas evidencias de mejoría se plantea una reflexión final que es la de por qué este tipo de sistemas constructivos no están todavía integrados en el modelo constructivo español .


2021 ◽  
Vol 5 (2) ◽  
pp. 18-25
Author(s):  
Hassan Abdulsalam ◽  
Ibrahim Nuhu

World development increased dramatically ever since the Industrial Revolution, in particular after  second world war (WWII), which drove the rise of energy consumption. Thus, energy consumption in the World has been growing continuously in the past 50 years. Using micro Combined Heat and Power (mCHP) allows energy scheduling and demand-side management depending on different variables which will benefit users and suppliers. Different researches have been conducted due to increasing interest from researchers to increase and optimise the advantages of energy scheduling. In addition to the mCHP system, optimisation process also includes distributed energy sources (solar panels) with electricity storage. On the demand side, various devices with different load profiles which can be controlled over time can be considered. This study therefore, being a desktop based one, sought to review the energy demand-side management as it applies to the use of mCHP in residential settings.


Author(s):  
Ying Guo ◽  
Rongxin Li

In order to cope with the unpredictability of the energy market and provide rapid response when supply is strained by demand, an emerging technology, called energy demand management, enables appliances to manage and defer their electricity consumption when price soars. Initial experiments with our multi-agent, power load management simulator, showed a marked reduction in energy consumption when price-based constraints were imposed on the system. However, these results also revealed an unforeseen, negative effect: that reducing consumption for a bounded time interval decreases system stability. The reason is that price-driven control synchronizes the energy consumption of individual agents. Hence price, alone, is an insufficient measure to define global goals in a power load management system. In this chapter the authors explore the effectiveness of a multi-objective, system-level goal which combines both price and system stability. The authors apply the commonly known reinforcement learning framework, enabling the energy distribution system to be both cost saving and stable. They test the robustness of their algorithm by applying it to two separate systems, one with indirect feedback and one with direct feedback from local load agents. Results show that their method is not only adaptive to multiple systems, but is also able to find the optimal balance between both system stability and energy cost.


2012 ◽  
pp. 318-332
Author(s):  
Ying Guo ◽  
Rongxin Li

In order to cope with the unpredictability of the energy market and provide rapid response when supply is strained by demand, an emerging technology, called energy demand management, enables appliances to manage and defer their electricity consumption when price soars. Initial experiments with our multi-agent, power load management simulator, showed a marked reduction in energy consumption when price-based constraints were imposed on the system. However, these results also revealed an unforeseen, negative effect: that reducing consumption for a bounded time interval decreases system stability. The reason is that price-driven control synchronizes the energy consumption of individual agents. Hence price, alone, is an insufficient measure to define global goals in a power load management system. In this chapter the authors explore the effectiveness of a multi-objective, system-level goal which combines both price and system stability. The authors apply the commonly known reinforcement learning framework, enabling the energy distribution system to be both cost saving and stable. They test the robustness of their algorithm by applying it to two separate systems, one with indirect feedback and one with direct feedback from local load agents. Results show that their method is not only adaptive to multiple systems, but is also able to find the optimal balance between both system stability and energy cost.


Author(s):  
Osamah A. Alsayegh ◽  
Fotouh A. Al-Ragom

With population of 3.9 million and area of 17,818 km2, the State of Kuwait holds about 8% and 1% of the world proven oil and gas reserves, respectively. Its total primary energy (oil and gas) production is about 3.5 million barrel oil equivalent per day (Mboe/d). Yet, Kuwait is facing energy challenges as a result of high and rapid growth of domestic energy consumption that has reached 18% of its total primary energy production. Therefore, adopting policies to transform the present energy system to a sustainable system has become indispensable national requirement. In this paper, a transition scenario for Kuwait’s energy system is proposed. The transition scenario addresses both the supply and demand sides through diversifying primary energy mix and energy demand management measures. The energy mix scenario is the optimum outcome of MARKAL-TIMES model of the energy system of Kuwait. Modeling results show that meeting 10% of the country’s energy demand through the exploitation of solar and wind energies by 2030 is the technical and economical optimal scenario. While the demand management measures are based on pilot energy conservation and efficiency study that shows energy saving could reach 24% and leading to savings of 4% reduction in power installation capacity. Utilization of efficient water desalination systems can reduce national energy consumption by 5%. The paper concludes with policy implications that are essential to launch the transformation toward sustainability.


Sign in / Sign up

Export Citation Format

Share Document